
Computer Science

Carnegie
Mellon

DISTRIBUTION STATEMENT A
taC QUALITY DMDÜ ^C* P"™? ^ase

Distribution Unlimited

A Numerical Optimization Approach

to General Graph Drawing

Daniel Tunkelang

January 1999

CMU-CS-98-189

School of Computer Science

Carnegie Mellon University

Pittsburgh, PA 15213

Submitted in partial fulfillment of the requirements

for the degree of Doctor of Philosophy

Thesis Committee:

Daniel Sleator, Chair

Paul Heckbert

Bruce Maggs

Omar Ghattas, Civil and Environmental Engineering

Mark Wegman, D3M T. J. Watson Research Center

Copyright © 1999 Daniel Tunkelang

This research was supported by the National Science Foundation under grant number DMS-
9509581. The views and conclusions contained in this document are those of the author and should
not be interpreted as representing the official policies, either expressed or implied, of the NAF or the
U.S. government. .„..1V„

DISTRIBUTION STATEMENT A
Approved for Public Release

Distribution Unlimited

Keywords: visualization, graph drawing, numerical optimization, force-directed

V O^mgllOn School of Computer Science

DOCTORAL THESIS
in the field of

ALGORITHMS, COMBINATORICS AND OPTIMIZATION

A Numerical Optimization Approach to
General Graph Drawing

DANIEL TUNKELANG

Submitted in Partial Fulfillment of the Requirements
for the Degree of Doctor of Philosophy

ACCEPTED:

/üShjfc ?W , /? /??*- X
DATE

DEPARTMENT HEAD I ' / ÖÄTE
/// ?M

APPROVED:

T^^Xx- / / BJ <n
1 U DEAN ' ' ' FÜTF

Abstract

Graphs are ubiquitous, finding applications in domains ranging from software
engineering to computational biology. While graph theory and graph algorithms are some
of the oldest, most studied fields in computer science, the problem of visualizing graphs
is comparatively young. This problem, known as graph drawing, is that of transforming
combinatorial graphs into geometric drawings for the purpose of visualization.

Most published algorithms for drawing general graphs model the drawing problem with a
physical analogy, representing a graph as a system of springs and other physical elements
and then simulating the relaxation of this physical system. Solving the graph drawing
problem involves both choosing a physical model and then using numerical optimization
to simulate the physical system.

In this dissertation, we improve on existing algorithms for drawing general graphs. The
improvements fall into three categories: speed, drawing quality, and flexibility. We
improve the speed using known techniques from both the many-body work in
astrophysics and the numerical optimization literature. We improve drawing quality both
by making our physical model more comprehensive than those in the literature and by
employing heuristics in our optimization procedure to avoid poor local minima. Finally,
we improve the flexibility of existing approaches both by cleanly separating the physical
model from the optimization procedure and by allowing the model to include a broad
class of constraints.

We are able to demonstrate some of our improvements through theoretical analysis. To
demonstrate the others, we use an implementation of our approach in the Java
programming language.

Acknowledgments

First, I would like to thank my advisor, Danny Sleator, and the other members of my

committee: Paul Heckbert, Omar Ghattas, Bruce Maggs, and Mark Wegman. I am

especially grateful that they allowed me to pursue a dissertation in an area somewhat

removed from their primary fields of research, advising me according to their respective

strengths. Their feedback was essential to the quality of this dissertation.

I am greatly indebted to Carnegie Mellon University for providing both the funding and

the intellectual environment that were essential to my work. I especially thank my former

housemate, Jonathan Shewchuk, and my officemates, Girija Narlikar and Chris Okasaki,

for engaging me in discussions across the gamut of computer science. A list of all of the

people who formed my experience at CMU would double this size of this dissertation, but

some names are indispensable: Avrim Blum, Andrew Kompanek, Corey Kosak, Sean

Slattery, and Alma Whitten.

I owe my interest in graph drawing to Mark Wegman, who introduced me to the area

when I was an MIT undergraduate co-op student at the IBM T. J. Watson Research

Center. I thank Mark and Charles Leiserson again for supervising my Master's Thesis,

and I thank others at IBM for numerous discussions and encouragement: Rangachari

Anand, Lisa Brown, Roy Byrd, Jim Cooper, Doug Kimmelman, Alan Marwick, V. T.

Rajan, and Tova Roth.

My family and friends have always been invaluable, but especially during the ordeal of

completing my dissertation. I cannot thank my parents and brother enough for putting up

with my ever-changing moods during this trying time. Likewise, my closest friends,

Marissa Billowitz and Bilal Khan, sustained me through many trying days and nights.

Finally, I would like to thank all of the teachers who nurtured my interests in mathematics

and computer science through two decades of schooling. Above all, I thank Gian-Carlo

Rota, whom I can finally take up on his promise to let me take him out to dinner after

obtaining my Ph.D.

Table of Contents

1. Introduction 7

2. What is Graph Drawing? 9

2.1. Drawing Conventions 12

2.2. Constraints 13

2.3. Preferences _ 14

2.4. Summary 15

3. Previous Work 16

3.1. Algorithms for Specific Classes of Graphs 16
3.1.1. Trees 16

3.1.2. Directed Acyclic Graphs 18

3.1.3. Planar Graphs 20

3.2. Algorithms for General Graphs 21

3.2.1. The Topology-Shapes-Metrics Approach 21

3.2.2. The Force-Directed Approach 22

4. The Force-Directed Approach 23

4.1. The Spring Embedder Model 23

4.2. Kamada and Kawai's Approach .'. 24

4.3. Fruchterman and Reingold's Approach 25

4.4. Models that Address Edge Crossings 26

4.5. Computational Complexity 26

4.6. Other Force-Directed Work 27

4.7. Summary of Problems in Published Approaches 27

5. Modeling Graph Drawing as an Optimization Problem 29
5.1. Output Variables 29

5.2. Force Laws 29

5.2.1. Springs 30

5.2.2. Vertex-Vertex Repulsion 32

5.2.3. Vertex-Edge Repulsion 34

5.3. Constraints 35

5.3.1. Penalty Functions .' 35

5.3.2. Constraints versus Preferences 35

6. Computing the Gradient Efficiently 37

6.1. Computing the Gradient Naively 37

6.2. Simple 8(n) Approximations for Computing Vertex-Vertex Repulsion 38

6.2.1. Distance Cut-Offs 38

6.2.2. Centripetal Repulsion 40

6.3. Approximating Vertex-Vertex Repulsion Forces in 0(n log n) Time 42

6.3.1. Building the Quad-Tree 43

6.3.2. Computing the Force on Each Particle 45

6.3.3. Applying Barnes-Hut to Compute Vertex-Vertex Repulsion Forces 47

6.4. Computing Vertex-Edge Repulsion Forces 47

7. The Optimization Procedure 49

7.1. The Method of Steepest Descent 49

7.2. The Newton Direction 51

7.3. The Conjugate Gradient Method 52

7.4. The Conjugate Gradient Method with Restarts 53

7.5. Computing the Step Size 54

8. Making the Gradient Time-Dependent 56

8.1. Making the Gradient Smoother in the Early Iterations 56

8.1.1. Capping Spikes 57

8.1.2. Strengthening the Long-Range Vertex-Vertex Repulsion Forces 58

8.2. Using Exterior Penalties to Incorporate Constraints 58

8.3. Introducing Additional Degrees of Freedom 60

9. Vertex Size and Shape 62

9.1. Vertex Radii 62

9.2. Adapting the Force Laws to Consider Vertex Radii 63

9.2.1. Increasing the Rest Length of Edge Springs 63

9.2.2. Modifying the Vertex-Vertex Repulsion Law 64

9.2.3. Modifying the Vertex-Vertex Repulsion Law 64

9.3. Adapting the Procedure to Compute the Forces 65

10. Qualitative Results: A Gallery of Examples 66

10.1. Trees 66

10.2. Planar Biconnected Graphs 69

10.3. Sparse Non-Planar Graphs 72

10.4. Dense Graphs 74

11. Quantitative Results 77

11.1. Computational Complexity 77

11.2. Number of Iterations 78

11.3. Running Time 82

12. Conclusions and Future Work 84

Bibliography 87

1. Introduction

In 1979, Wetherell and Shannon concluded a paper on "Tidy Drawing of Trees" by

saying, "We are currently studying methods for the tidy display of other graph structures,

a subject not covered in the literature" [WS79]. In the past two decades, graph drawing

has become a vibrant research area. An annotated bibliography from 1994 [DETT94]

lists over 300 relevant publications, and these do not include the dozens of papers and

systems presented at the annual symposia on graph drawing since 1993. More recently,

the authors of the bibliography have published a textbook [DETT99] on graph drawing.

Most of the work, however, considers special cases. A quarter of the papers in the

annotated bibliography address the problem of computing planar (crossing-free) drawings

of planar graphs. A comparable fraction of the work considers layered drawings of

directed acyclic graphs. While this specificity attests to the relative importance of certain

classes of graphs, it also reflects the difficulty of solving the general problem.

Our work addresses general graph drawing. Although the treatment of special cases can

lead to elegant mathematical results, the practical side of graph drawing requires a greater

emphasis on generality. Our approach, based on numerical optimization, builds on

existing approaches for drawing general graphs. We demonstrate the value of our work

in three ways. First, we show both a theoretical and an empirical improvement in

performance over the published general graph drawing algorithms. Second, we achieve

better drawings by incorporating aesthetic elements that the published approaches do not

take into account. Third, we obtain a more flexible approach by using a numerical

optimization approach that cleanly separates the objective function from the optimization

procedure and allows us to incorporate a general class of constraints into our model.

We begin with an overview of the graph drawing problem and its wide range of

applications. We then review the previous work in the field, focusing on algorithms that

address general graphs. We present a general framework for modeling graph drawing as

a numerical optimization problem, and we show how previous approaches fit into this

framework. We then present our techniques to address performance, drawing quality, and

flexibility. Our principle solutions for the performance problem are to use the Barnes-

Hut procedure to reduce a 6(n2) time computation in the inner loop to 6(n log n), and

then to replace the commonly used method of steepest descent with the conjugate

gradient method as a more efficient optimization procedure. Our main improvements in

drawing quality come from incorporating vertex-edge distance and vertex shape into our

physical model. Finally, we describe how we incorporate a general class of constraints

into our model by making the objective function time-dependent and using the method of

exterior penalties. In fact, this technique of using a time-dependent objective function not

only makes our approach more flexible, but can also improve both performance and

drawing quality. We present the results of our work both qualitatively, though a gallery

of examples, and quantitatively, through both theoretical and empirical analysis.

2. What is Graph Drawing?

Before we can talk about graph drawing, we must explain what we mean by a graph. A

graph is a collection of entities and their relationships. We refer to the entities as the

vertices of the graph, and to their relationships as edges.1 Each edge pairs two vertices,

which we call its endpoints. When we are discussing a single graph, we will denote it by

G, and we will denote the vertex and edge sets as V and E respectively.

In the simplest case, the vertices and edges have no further information associated with

them. For example, we can describe the complete bipartite graph K^ by enumerating its

vertices V = {1, 2, 3, 4, 5, 6} and edges E = {(1, 4), (1, 5), (1, 6), (2, 4), (2, 5), (2, 6),

(3, 4), (3, 5), (3, 6)}. Here, the vertex names are just placeholders, since the vertices are

indistinguishable except where the topology of the graph breaks their symmetry. Figure
2.1 shows a drawing of K^.

Figure 2.1: A Drawing of K^

In a more typical context, the vertices and edges will have further information associated

with them—often information that is essential to the sense of the graph. For example, we

could have a graph where the vertices represent web pages and the edges are links

connecting them. Here, each vertex would be associated with a URL and possibly further

attributes, such as the type of its associated document. Another possibility is that the

Other authors refer to vertices as nodes and to edges as arcs or links. Our terminology

is consistent with using the letters V and E to denote the vertex and edge sets, as well as

the lowercase letters v and e for individual vertices and edges.

graph could represent a database of terms extracted from a large corpus of text. Here, the

edges could store the nature of the relationships among the terms. Figures 2.2 and 2.3

show examples of graphs that could arise in practical applications.

[cjöslenfialisra

ph»noi»gnplogyj PSYCHOLOGY

stem union

f '— ' 1
PHILOSOPHY

I1S«8B1

(annatt-c8B>putertatgrfac»s|

/
/

^at>DH«UsB>l

^\ I COMIT IFRSlKVI
. . 1— L _. 1 JMftware ename
[theory of coaytttaoan] —

/

[MATHEMATICS

/ \

Figure 2.2: Disciplines and their Common Subfields

/ UndivariVMewYork
The English Patient 2~~^„

The Avengers

/ The Avengers

The Averigers

MadTJäg-andJSlory

Silverado

/ A League oTTheir Own _, , .,.„
■»» j »>/ j i^ ""-. Sleeple.s*-m Seattle Madonna: Truth or Dare \ ,!> /

JFK
ApoHo 13

JKK f
Jktftrers

The Women

/

Steel Magnolias

„Sloejre-fs -^ ^ AFewGofldMen

King of-Comedy

,'■"' Awakenings

—r

ofEnde Terms of Endearment

\

King Creole

\
\

Figure 2.3: Six Degrees of Kevin Bacon

One attribute of an edge that we single out is its directedness. An edge can be undirected

or directed, reflecting whether the relationship between the endpoints is symmetric or

asymmetric. We call a graph consisting of only undirected edges an undirected graph

and one consisting of only directed edges a directed graph. If a graph has both undirected

and directed edges, we call it a mixed graph. In this dissertation, we will focus on

undirected graphs. The techniques we describe can be used to draw directed graphs as

well, but other work, which we describe in the following chapter, is more suited to

drawing directed graphs in such a way as to emphasize the directions of edges.

We define graph drawing as the transformation of a graph into a visual representation of

the graph, which we call a drawing. We depict this transformation in Figure 2.4. In a

typical drawing, we map vertices to boxes or circles on a subset of the plane and map

edges to lines connecting the boxes that represent their endpoints.

V:

E:

= {1,2,3,4,5,6,7,8}

= {(1,2), (1,4), (1,5),
(2,3), (2,6), (3,4),
(3,7), (4,8), (5,6),
(5,8), (6,7), (7,8)}

/
/'

graph drawing algorithm

Figure 2.4: Graph Drawing

!-_

...z
/

/
/

Although graph drawing per se is a young field of research, graph drawing as a practical

art predates computer science. Throughout the sciences, people use graphs to represent

systems composed of a large number of interacting components, especially when the

individual components are simple. Physicists and chemists draw graphs that model

interaction among particles. Electrical engineers draw graphs to represent circuits. Social

scientists draw graphs of group interaction. Still, the widest use of graph drawing is in

computer science and information technology, with domains ranging from software

architecture to semantic networks. Often, graphical visualizations of such systems reveal

far more structure than textual ones, as per the cliche that a picture is worth a thousand
words.

Di Battista et al. break down graph drawing requirements into three basic concepts:

drawing conventions, aesthetics, and constraints [DETT99]. We briefly describe each of

these concepts.

2.1. Drawing Conventions

Drawing conventions are the basic rules that define the space of admissible drawings.

Generally, we can think of drawing conventions as global constraints on the space of

drawings. The drawing conventions specify, among other things, the area that can be

used for the drawing. Unless we specify otherwise, we will assume that the drawing area

is a rectangle in the Euclidean plane R .

Di Battista et al. list some of the more widely used drawing conventions, and Figure 2.5

shows various drawings of the complete graph K4, for which V = {1, 2, 3, 4} and E =

{(1, 2), (1, 3), (1, 4), (2, 3), (2, 4), (3, 4)}, using some of these conventions:

Polyline Drawing: each edge is represented as a chain of connected line segments; the

chain may bend at the connection points. See Figure 2.5 (a).

Straight-line Drawing: each edge is represented as a single line segment. A special case

of polyline drawing. See Figure 2.5 (b).

Orthogonal Drawing: each edge is represented as chain of alternating horizontal and

vertical line segments. A special case of polyline drawing. See Figure 2.5 (c).

Planar drawing: no two edges cross; requires that the graph be planar. See Figure 2.5 (d).

Upward drawing: all directed edges are represented by lines or curves that strictly

increase in the vertical direction. Requires that the graph have no directed cycles.

See Figure 2.5 (e) below.

Grid Drawing: all vertices, edge crossings, and bend-points have integer coordinates.

Generally, our drawing conventions will include some subset of the above, as well as

other application-dependent considerations. Our main interest will be in straight-line and

upward drawings, since these conventions are the most amenable to numerical

optimization approaches.

(a) (b)

CtMs

k^i^
(c)

(d) (e)

Figure 2.5: Illustration of Various Drawing Conventions for the Graph K4

We note that none of the above conventions address vertex shape. We will assume that

vertices are represented by circles, ellipses, or rectangles. Often, we will use the space

taken up by a vertex to show a name or some other information (textual or pictorial)
associated with it.

2.2. Constraints

The drawing conventions constrain the general properties of the drawing. Sometimes, we

use explicit constraints to specify the behavior of particular vertices, edges, or subgraphs.

The two primary sources of constraints are semantics and user interaction. Semantics, for

example, might dictate that a given subset of vertices forms a cluster and should be drawn

in a rectangle that does not include any other vertices. A user, after seeing an

automatically produced drawing might decide that the drawing looks better if a particular

vertex is placed to the left of another vertex and then request that the drawing be

recomputed subject to that constraint. Typical constraints concern absolute or relative
vertex placement.

2.3. Preferences

While it is possible for drawing conventions and constraints to fully determine a drawing,

it is often more useful to distinguish between hard constraints and soft preferences. For

example, we could impose a constraint specifying the exact distance between two vertices

in the drawing, or we could incorporate a preference that the distance between the

vertices be close to the desired distance. Preferences have two advantages over

constraints. First, they can be associated with continuous functions, as in the previous

example, while constraint satisfaction is binary. Second, they can always be combined,

even when combining analogous constraints might lead to an inconsistency. For

example, minimizing edge lengths and maximizing the distances between all vertices are

clearly competing goals; they can, however, be combined in the form of weighted

preferences.

Generally speaking, a preference specifies a measure by which we can judge a drawing.

We quantify these preferences by making them weighted terms in an objective function

that measures the overall quality of a drawing. The weights reflect the priority assigned

to each preference.

Di Battista et al. list the following widely used preferences, which they call "aesthetics":

Crossings: minimization of the number of edge crossings.

Area: minimization of the drawing area. Measured using either the convex hull or the

bounding rectangle. Only meaningful when the drawing conventions prevent the drawing

from being arbitrarily scaled down.

Total Edge Length: minimization of the sums of lengths of edges. Only meaningful when

the drawing conventions prevent the drawing from being arbitrarily scaled down.

Maximum Edge Length: minimization of the maximum lengths of an edge. Only

meaningful when the drawing conventions prevent the drawing from being arbitrarily

scaled down.

Uniform Edge Length: minimization of the variance in edge length. Only meaningful

when the drawing conventions prevent the drawing from being arbitrarily scaled down.

Total Bends: minimization of the total number of edge bends in a polyline drawing.

Maximum Bends: minimization of the maximum number of edge bends per edge in a
polyline drawing.

Uniform Bends: minimization of the variance in the number of edge bends in a polyline
drawing.

Angular Resolution: maximization of the minimum angle between edges incident to the

same vertex in a polyline (especially straight-line) drawing.

Aspect Ratio: minimization of the ratio between the larger and smaller dimensions of the
drawing area.

Symmetry: displaying symmetries of the graph with geometric symmetries.

The sheer variety of criteria enumerated above suggests that aesthetics are more of an art

than a science. Given the subjective nature of aesthetics, there are limits to how

systematic an approach we can take to describing what makes one drawing of a graph

better than another. Nonetheless, these criteria are sufficiently general that we can start

from some subset of them, refining our model to suit the needs of a particular application.

2.4. Summary

By quantifying and combining drawing conventions, constraints, and preferences, we

arrive at formulation of graph drawing as a problem in numerical optimization. The

drawing conventions dictate the variables in our problem space. The constraints define

the feasible portion of the problem space. Finally, the objective function expresses the

weighted combination of preferences and defines the overall measure that we seek to
minimize, subject to the constraints.

3. Previous Work

Although graph drawing as such is a young field, it has already generated a substantial

body of literature. The best general sources of information are the annotated bibliography

[DETT94], the recently published textbook [DETT99], and the proceedings of the

annual Symposia on Graph Drawing [GD93, GD94, GD95, GD96, GD97, GD98].

Related fields include computational geometry, combinatorial optimization, visual

languages, and human-computer interfaces. This section describes the small fraction of

that work that is most relevant to the proposed approaches; the reader is encouraged to

consult the above references.

Broadly speaking, there are two kinds of graph drawing algorithms. The first address

specific classes of graphs. Algorithms of the second kind address general graphs and

differ mostly in their choice of optimization strategy.

All of the algorithms that we discuss produce drawings in R , with vertices represented as

non-overlapping circles (or boxes) and edges as open curves connecting them. They

generally assume that the input graphs are connected, since it is not difficult to compute

the connected components of a graph and draw them separately.

3.1. Algorithms for Specific Classes of Graphs

There are a variety of algorithms designed for specific classes of input graphs. Three

classes that have attracted particular attention are trees, directed acyclic graphs, and

planar graphs.

3.1.1. Trees

Trees, the simplest class of connected graphs, are among the most common structures in

computer science. A tree is a connected, acyclic graph. Most algorithms for drawing

trees assume that all edges are drawn as straight lines directed away from a specified root

vertex. Supowit and Reingold [SR83] outline six widely accepted aesthetic constraints

for what they call a "eumorphous" (well-shaped) drawing of a rooted tree:

1) The height of a vertex (i.e. its vertical distance from the root) should be proportional

to its distance from the root measured in tree branches. Hence, vertices are placed on

discrete horizontal levels.

2) When the children are ordered (e.g. in a binary tree), left children should be placed

strictly to the left of their parents. Similarly, right children should be placed strictly to
the right.

3) Vertices on a level should have some minimum separation so as not to overlap.

4) Parents should be centered over their children.

5) Edges should not cross, i.e. the drawing should respect the planarity of the tree.

6) Isomorphic subtrees should be drawn congruently, and subtrees that are isomorphic

when the order of children in all of their subtrees is reversed should be drawn as
mirror images.

Figure 3.1 illustrates a eumorphous drawing of a rooted tree.

Figure 3.1: Eumorphous Drawing of Rooted Tree

Supowit and Reingold, along with other researchers, aim to minimize the width of the

tree subject to these constraints. The linear-time algorithm of Reingold and Tilford

[RT81] satisfies the six constraints but does not achieve the optimal width. Supowit and

Reingold show that, if vertex positions can be arbitrary real numbers, then the width

minimization problem can be solved in polynomial time by linear programming [SR83].

They show that, if the vertex positions are restricted to the integer lattice, then the

problem is NP-complete.

The problem of drawing free trees—that is, trees without a specified root—has received

far less attention. Eades describes an approach for drawing free trees radially in [Ea92].

The algorithm first picks as a root the graph-theoretical center of the tree—that is, a

vertex that minimizes the height of the tree directed outwards from that vertex. If there is

more than one center, then the algorithm chooses among them arbitrarily. It then places

the remaining vertices on concentric circles around the chosen root. Edges are drawn as

straight lines. The algorithm respects the tree's planarity as a constraint and seeks to

minimize the variation in edge length. The algorithm draws the tree recursively in linear

time. Figure 3.2 illustrates a radial drawing of a free tree.

Figure 3.2: Radial Drawing of a Free Tree

3.1.2. Directed Acyclic Graphs

Directed acyclic graphs, like rooted trees, have an inherent direction of flow. They are

generally used to represent hierarchical structures. Their drawing conventions are similar

to those for rooted trees, only that, since the graph may not be planar, the constraint of

planarity is replaced with a preference for avoiding edge crossings.

The standard approach, originally proposed by Sugiyama et al. [STT81], consists of three

phases that are illustrated in Figure 3.3.

The first phase assigns the vertices to levels such that every edge is directed "upwards"—

that is, from a lower level to a higher one. This phase also creates "dummy vertices" as

necessary along the edges so that all edges connect vertices (real or dummy) on

consecutive layers. A long edge (Vj, Vj) is thus transformed into a chain of short edges

(Vj, dummy^, (dummy!, dummy2), ..., (dummyk, Vj), where k is the number of

intermediate levels separating the two vertices. Sugiyama's original approach uses a

longest-path layering—that is, the level of a vertex corresponds to the number of edges in

the longest directed path entering the vertex. Gansner et al. propose, as an alternative

layering method, using linear programming to minimize the total number of dummy

vertices [GNV88].

The second phase determines the ordering of the vertices on each horizontal layer with

the goal of minimizing the number of edge crossings. Two heuristics for this problem,

which is NP-complete [GJ83], are to iteratively sort vertices according to the mean or

median positions of their neighbors on adjacent levels.

0»)

W U)

Figure 3.3: Drawing a Directed Acyclic Graph [DETT94]
(a) original drawing (b) arrangement of vertices in layers
(c) vertices permuted to avoid crossings (d) final drawing

The third phase uses the layering and ordering constraints of the previous two phases to

compute a drawing. The usual goal is to minimize the horizontal lengths of edges and the

number of bends induced by dummy vertices. Many heuristics have been proposed for

this last step, ranging from linear programming to physically-based simulation. Finally,

the edges are drawn either as straight lines, polylines that bend at the dummy vertices, or

splines interpolated from the polylines.

The first and third phases are generally performed in linear time (at least in practice, e.g.

by using the simplex method for linear programming), and hence the running time is

dominated by the second phase, each iteration of which requires linear time. A

clarification: when we say that the running time is linear, we mean linear in the number of

vertices and dummy vertices. The number of dummy vertices can be quadratic in the

number of vertices—even if the graph is sparse. Nonetheless, the overall performance is

generally considered sufficient to be practical.

The main drawback of the approach of Sugiyama et al. is that the layering constraints and

the bends (or curves) induced by dummy vertices can cause drawings to be unaesthetic

and even illegible. The approach is also somewhat inflexible, in that the aesthetic criteria

are hard-wired into the algorithm.

Still, the approach of Sugiyama et al. is sufficiently effective to have become the basis for

algorithms that draw directed acyclic or almost acyclic graphs. If a graph has one or more

directed cycles, then a subset of the edges can be reversed to make the graph acyclic.

Unfortunately, finding the minimum number of edges to reverse is NP-hard [GJ83], and

reversing a large number of edges makes the flow of the drawing meaningless. There are

many heuristics, the simplest being to reverse the back edges of a depth-first traversal, but

none have provable performance guarantees except for dense graphs [ES90]. Also, like

trees, directed acyclic graphs can be drawn on radial rather than horizontal levels [Ca80,

RM88].

3.1.3. Planar Graphs

A large amount of work has considered the problem of drawing planar graphs. The key

constraint is that the drawing be planar—that is, that it have no edge crossings. The

published algorithms achieve this aesthetic first by testing for planarity and computing an

embedding in the plane, and then transforming this embedding into a drawing. We refer

the reader to the annotated bibliography [DETT94] for a listing of linear-time algorithms

that test planarity and compute an embedding. For the transformation of the embedding

into a drawing, the algorithms pursue various goals. Generally, edges are drawn either as

straight lines or as polylines made up of only horizontal and vertical segments. Drawings

with the latter kind of edges are called orthogonal drawings. Again, we refer the reader to

the annotated bibliography for a fuller treatment.

3.2. Algorithms for General Graphs

Finally, we arrive at the algorithms that consider general graphs. Here, there are two

schools of thought. The topology-shape-metrics approach generates orthogonal drawings

of general graphs by prioritizing the aesthetics, while the force-directed approach

expresses the aesthetic preferences as force laws that determine the negative gradient of

an implicit objective function. We will briefly describe the topology-shapes-metrics

approach for completeness, but will devote an entire chapter to the force-directed work

that is more relevant to our own numerical optimization approach.

3.2.1. The Topology-Shapes-Metrics Approach

The topology-shapes-metrics approach breaks down the graph drawing process into three
steps.

The first step addresses topology by planarizing the drawing—that is, determining a set

of edge crossings and replacing them with dummy vertices so that the resulting graph is

planar. The goal is to minimize the number of crossings; since this problem is NP-hard

[GJ83], planarization algorithms use heuristics such as computing a maximal planar

subgraph and then routing the remaining edges greedily. The penalization step also

computes a planar embedding for the planarized graph.

The second step addresses shape by orthogonalizing the drawing—that is, assigning to

each edge in the embedding an alternating chain of horizontal and vertical line segments.

Here, the goal is to minimize the number of bends. Although it is NP-hard to minimize

the number of bends over all possible embeddings of a planar graph [GT94], we can use a

network flow algorithm to minimize the number of bends for a particular embedding in

quadratic time [Ta87]. If we are more concerned with performance than with bend

minimization, then we can compute a drawing with 0(1) bends per edge in linear time
[BK94].

The third step addresses metrics by compacting the drawing so as to minimize area—

subject to the embedding and edge bends computed in the previous two steps. A drawing

of area 0(n2) can be computed in 0(n+b) time [PT98].

3.2.2. The Force-Directed Approach

Force-directed algorithms, for the most part, formulate the drawing problem as one of

unconstrained numerical optimization. They rely on a physically-based model, the

principle aesthetic consideration being that proximity in the network should correspond to

proximity in the drawing. The algorithms quantify their preferences with force laws that

imply an objective function or energy. The force-directed algorithms vary mostly in their

choice of force laws or their optimization strategy. Because our work is primarily

concerned with drawing general graphs, we will consider the previous work here in some

detail.

4. The Force-Directed Approach

Force-directed approaches use a physical analogy to model the graph drawing problem.

They model the drawing as a system of forces acting on the vertices, and then aim to find

a drawing where the net force acting on each vertex is zero. Equivalently, they associate

a potential energy with the drawing, and seek a configuration for which this energy of the
drawing is locally minimal.

Some early force-directed algorithms predate the recent interest in graph drawing per se.

These include Tutte's barycenter method [Tu63] and force-directed algorithms for circuit

layout [FCW67, QB79]. Here, however, we focus on more recent work that explicitly

addresses the general graph drawing problem.

A force-directed approach consists of two components. The first is the force or energy

model that quantifies the goodness of a drawing. The second is an optimization

algorithm for computing a drawing that is locally optimal with respect to this model.

In this chapter, we outline the published work on force-directed graph drawing. In the

following chapter, we present our own force model and compare our force laws to those
used in other models.

4.1. The Spring Embedder Model

Eades published a force-directed graph drawing algorithm which he called the "spring

embedder" [Ea84]. In his spring embedder model, edges act as springs acting on their

endpoints with a logarithmic force law and vertices as positive electrical point charges

repelling each other with an inverse-square force law. Figure 4.1 illustrates this physical
model.

We note that the "forces" in this and other "force-directed" algorithms do not induce

acceleration. There is no kinetic energy or momentum in the physical model; rather, each

iteration reduces the potential energy of the system. As a result, the system can be

described using first-order, rather than second-order, differential equations.

Eades's optimization algorithm creates an initial drawing of the graph randomly and then

performs a fixed number of steepest descent iterations. On each iteration, all vertices

move simultaneously in proportion to the net force exerted on them.

Eades claims that his algorithm produces good layouts for many graphs but performs

poorly on dense graphs, graphs with dense subgraphs, and graphs with a small number of

bridges. He also claims that his algorithm has an acceptable running time for graphs with

less than fifty vertices.

Unfortunately, the vagueness of these claims makes them difficult to analyze or criticize.

We can say, however, that the logarithmic spring law gives rise to an unaesthetically high

degree of variance in edge length, and that some of his parameters—for example, the

fixed number of steepest descent iterations—are not suitable when we increase the size of

the graph. Indeed, Eades admits that he only looked at graphs of at most fifty vertices, his

justification being that applications usually break up larger graphs into smaller subgraphs.

((¥))))> ^ * i ((©)))'"*■

-(urn ■■» ftAP M t®V)
A' '- -■' A >' "-■ ••-' 'A

Y i
Figure 4.1: The Spring Embedder Model

4.2. Kamada and Kawai's Approach

Kamada and Kawai's approach modifies the spring embedder model by eliminating the

electrical charges and instead associating a spring with every pair of vertices, rather than

just with the edges [KK89]. The springs act in accordance with Hooke's Law: the force

exerted on the vertices is proportional to the difference between the spring's rest length

and the actual distance between the vertices. If the actual distance is larger than the rest

length, then the spring pulls the vertices closer together; if the distance is smaller, then

the spring pushes them apart. For each pair of vertices, Kamada and Kawai make the

spring's rest length proportional to the shortest path in the graph connecting the two

vertices associated with the spring, and the spring's stiffness inversely proportional to its

rest length. Kamada and Kawai conceptualize their model in terms of energy rather than

forces: they integrate Hooke's Law to obtain a potential energy for each spring that is

quadratic in the difference between its rest length and the actual distance between the two
vertices.

Kamada and Kawai's approach also differs from that of Eades in its optimization

algorithm. Rather than moving all vertices at once, their algorithm moves only one

vertex in the drawing per iteration. On each iteration, the algorithm moves the vertex

experiencing the greatest net force to a point of locally minimal energy using a variation
of the Newton-Raphson method.

Kamada and Kawai's algorithm is not only conceptually elegant, but also produces very

aesthetic drawings. The main drawback of their approach is computational: their model

requires preprocessing step that computes the shortest paths for all node pairs. This

computation, which requires 9(n3) time and 0(n2) space (see the discussion below) makes
their approach impractical for large graphs.

4.3. Fruchterman and Reingold's Approach

Fruchterman and Reingold's model is similar to the spring embedder model [FR91]. It

preserves the original concept of repulsive vertex charges and attractive edge springs but

modifies the force laws for the sake of computational efficiency. They replace the

logarithmic spring force law with one that attracts the endpoints of an edge in proportion

to the square of the distance between them. Their vertex repulsion force is inversely

proportional to the distance between the vertices, while Eades's model makes the

repulsion inversely proportional to the square of the distance. Both of these changes

reduce computation without changing the general character of the force model.

Fruchterman and Reingold's optimization algorithm, like Eades's steepest descent

algorithm, uses the force laws to compute the direction in which vertices move.

However, it determines the extent of their movement according to a "cooling schedule,"

inspired by the method of simulated annealing, that limits the distance a vertex can move

as a decreasing function of the number of iterations performed. Frick et al. address the

inefficiency of Fruchterman and Reingold's cooling schedule by introducing the notion of

local vertex temperatures and also attempting to detect vertex oscillation and rotation of

the entire drawing [FLM94].

Fruchterman and Reingold claim that the main goals of their approach are speed and

simplicity, and that the main advantage of their approach over others is the former. Like

others, they do not address the problem of drawing large graphs, for which their fixed

number of iterations would be insufficient. All of the examples in their paper, for which

they claim that their algorithm produces drawings in less than ten seconds on a SPARC

station 1, are graphs of under forty vertices. A harsher criticism of their approach,

however, is that the optimization procedure is unnecessarily complicated. The cooling

schedule that they use to determine how much the vertices move on each iteration is a

poor substitute for a line search (which we discuss in Chapter 7); in fact, it can cause their

algorithm to converge to a point that is not locally optimal.

4.4. Models that Address Edge Crossings

The force-directed models described above focus on two aesthetics: keeping edges short

and distributing vertices uniformly throughout the drawing area. In Kamada and Kawai's

model, one aesthetic summarizes these two: making the distance between vertices

correlate to the lengths of the shortest paths connecting them in the graph. None of these

models, however, takes edge crossings into account.

Two models that consider edge crossings are those of Davidson and Harel [DH96] and of

Tunkelang [Tu94]. Both are energy models that include a term proportional to the

number of edge crossings. Davidson and Harel use a simulated annealing algorithm for

optimization, while Tunkelang uses a collection of local optimization heuristics. The

discreteness of the edge crossing term rules out the continuous optimization methods

used by the other force-directed approaches.

4.5. Computational Complexity
All of the force-directed approaches we have described are iterative. We therefore

consider the computational complexity of performing a single iteration, as well as the

number of iterations necessary to converge to a locally optimal drawing.

For the approaches of Eades, Fruchterman and Reingold, and variations thereof, the cost

of performing an iteration is essentially that of computing the net force acting on every

vertex. In a graph of n vertices and m edges, there are m springs and % n (n-1) pairs of

vertices. Hence, the cost of computing all of the forces is 6(n2). The number of

iterations necessary for convergence is poorly understood, but the consensus seems to be

that a steepest descent approach requires a number of iterations that is linear in the

number of vertices. Hence, the overall running time is 6(n3).

Kamada and Kawai's approach, however, is quite different. Because it only moves one

vertex per iteration, it can recompute the forces incrementally in 6(n) time. The catch,

however, is in the time and space necessary for the preprocessing step of computing all

shortest paths. Kamada and Kawai's algorithm performs this computation in 6(n3) time,

though this time could be reduced to 6(nm log n) for sparse graphs by executing

Dijkstra's single-source shortest paths algorithm for each vertex [CLR90]. Even for

sparse graphs, however, storing the computed shortest paths requires 6(n2) space.

Kamada and Kawai claim that the number of iterations necessary for convergence is

linear in the number of vertices. Hence, the overall running time is dominated by the
preprocessing time.

4.6. Other Force-Directed Work

The simplicity of the force-directed approach has invited endless variations, a few of

which we list here. Sugiyama and Misue use "magnetic" springs and fields that try to

make edges conform to particular orientations [SM94]. Ignatowicz uses "orthogonal"

springs to try to make edges meet at right angles [Ig95],. Coleman and Parker apply a

variety of aesthetics to Fruchterman and Reingold's algorithm [CP96].

Two recent papers incorporate constraints into the spring embedder model. Wang and

Miyamoto introduce absolute constraints on vertex position, constraints that restrict

relative vertex position, and cluster constraints that cause the algorithm to treat subgraphs

independently of each other [WM95]. He and Marriott allow linear constraints, as well

as "suggested values" for vertex positions [HM96].

4.7. Summary of Problems in Published Approaches

The force-directed approaches of Eades and others cast the graph drawing problem into a

framework of numerical optimization. Unfortunately, they do so without benefiting from

the wealth of knowledge that numerical optimization offers as an established discipline.

Most of the papers of force-directed graph drawing barely even acknowledge that they are
using numerical optimization as a framework. In general, they do not take sufficient
advantage of results from other fields.

The most obvious flaw of the published force-directed algorithms is that they do not scale
gracefully. The ever-increasing speed of hardware cannot keep up with a running time

that is 6(n), much as cheap memory is not cheap enough for us to use an algorithm that

requires 6(n) space. Our principle contribution to the field is to apply results from the
fields of numerical optimization and many-body simulation to reduce this asymptotic
running time, as well as to create an approach that meets Fruchterman and Reingold's
goals of speed and simplicity.

5. Modeling Graph Drawing as an Optimization Problem

In this chapter, we formally describe the force-directed approach for modeling general

graph drawing as a numerical optimization problem.

5.1. Output Variables

We denote the input graph by G. G consists of the vertex set V a {v1s v2 v„} and the

edge set E = {e^ e2 em}. We denote the two endpoints of an edge e by from(e)

and to(e). Since our edges are undirected, the ordering of the endpoints is arbitrary.

We will assume for the next few chapters that all vertices are mapped to dimensionless

points and all edges to straight line segments connecting their endpoints. While we

primarily intend our model for drawings in the plane, the model applies without

modification to drawings in higher dimensional spaces.

We define the output variables x(Vj)—or X-, for short—to be the position vectors of

vertices vi; for i equal to 1, 2 n. For a given graph G, we denote a drawing D by the

n-dimensional vector of vectors [xu x* ...*„]. Because the edges are straight line

segments, the drawing of G is completely specified by this vector of vertex positions.

5.2. Force Laws

As we described in the previous chapter, the force-directed approach models graph

drawing using a physical analogy. We use a force model in which our force laws produce

a vector that is the negative gradient of an implicit energy function we seek to minimize.

There are force laws corresponding to different aesthetic criteria:

Springs. We associate a spring with each edge. A spring pulls the endpoints of the edge

it represents towards each other when their distance exceeds the spring's rest length and

pushes them away from each other when their distance is smaller than the rest length. If

the rest length is zero, then the spring always pulls the endpoints towards each other.

Vertex-vertex repulsion. All vertices push each other away in order to avoid overlap

among vertices and to spread the vertices out uniformly throughout the drawing area.

The magnitude of this repulsion force for a given pair of distinct vertices is a decreasing
function of the distance between the two vertices.

Vertex-edge repulsion. Vertex-vertex repulsion may not prevent a vertex from being

placed so close to an edge—possibly overlapping it—that the edge appears to be incident

to the vertex. Hence, we include a term in the force model for every vertex-edge pair;

again, the magnitude is a decreasing function of the distance between the vertex and edge.

Although we will refer to the energy of a drawing when we discuss the numerical

optimization procedure, we will mostly discuss the negative gradient of the objective

function, which is the vector corresponding to the net forces on all of the vertices.

5.2.1. Springs

Since the edges specify which vertex pairs have a direct relationship, the corresponding

springs serve to exhibit the importance of these relationships in the drawing.

The simplest of spring laws is Hooke's Law with a rest length of zero. Using Hooke's

Law for the springs gives us, for edge eu a force of magnitude kx attracting each endpoint

towards the other, where x = llx(from(ej)) - x(to(ej))ll and k is a constant representing

the stiffness of the springs. We could assign a different stiffness kj to each edge eg to

reflect the relative importance of each edge; the suffer springs would correlate in smaller

edges in an optimal drawing.

Hooke's Law (with a rest length of zero) is computationally appealing because the force

vector can be computed using only one vector subtraction and one scalar multiplication.

In fact, if the coordinates and spring constant(s) are integers, then the force vector can be

computed exactly using only integer arithmetic.

Fruchterman and Reingold, however, found that they had more success using a quadratic

spring force—that is, a force of magnitude proportional to llx(from(ej)) - x(to(ej))ll .

We will discuss the constant of proportionality in a moment.

Fruchterman and Reingold observed that a linear spring force is often not strong enough

to overcome poor local minima—that is, local minima in the objective function that are

far inferior to the global minimum. Hence, they were willing to incur the additional

arithmetic operations (which include a square root) necessary for a quadratic spring force.

They also experimented with using higher order powers for the spring force, but rejected

them on the grounds that the were more costly to compute. In fact, a cubic spring force

would be less expensive to compute than a quadratic force, since it does not require

computing a square root. We did find, however, that using higher order powers for the

spring force slows down our optimization procedure by making the force laws less
smooth.

Eades's original spring force for the spring embedder model was logarithmic, the

magnitude of the force being proportional to log(llx(from(ej)) - x(to(ej))ll / x0), where

x0 is a user-specified constant. A fact that Eades does not mention is that this spring

force becomes repulsive (rather than attractive) when llx(from(ej)) - x(to(ej))ll < x0.

Regardless of this short-range behavior, we found, as we discussed earlier, that a

logarithmic spring force leads to an unaesthetically high degree of variance in the edge
lengths.

Kamada and Kawai use an model that relies exclusively on springs. Instead of only

associating springs with the edges, they associate a spring with every pair of distinct

vertices. Their springs conform to Hooke's Law; the rest length and stiffness of each

spring depend on the length of the shortest path in the graph connecting the two vertices.

If the shortest path connecting vs and vf has a length of shortestPath(Vj, Vj) edges, then

the rest length of the corresponding spring is proportional to shortestPath(Vj, Vj), while

the stiffness is proportional to 1/shortestPath(Vj, Vj). In other words, the magnitude of

the spring force that each pair of distinct vertices (Vj, Vj) exert on each other is

proportional to (1 / shortestPath(Vj, Vj)) • I llx, - X/ll - c • shortestPath(vi9 Vj) I,

where the constant C reflects the desired length of an edge. As Kamada and Kawai note,

their model applies to graphs with either unit edges or weighted edges; in the latter case,

shortestPath(V|, Vj) denotes the sum of weights along the shortest path connecting
distinct vertices Vj and Vj.

As we noted in the previous chapter, Kamada and Kawai's model relies on a time and

space-intensive pre-processing phase to compute and store the 9(n2) shortest path lengths.

Moreover, as we will see later, associating springs with all vertex pairs prevents us from

using many-body simulation methods to reduce computation. Hence, we stick to a model
of springs and repulsion.

Our own experiments agree with Fruchterman and Reingold's observation that quadratic

spring force laws work better than linear springs to avoid poor local minima, and we

found that using higher order polynomials for the spring laws slowed down our

optimization procedure. We therefore use Fruchterman and Reingold's quadratic spring

law. In Chapter 9, we describe a modification to this law that takes vertex shape and size

into account.

5.2.2. Vertex-Vertex Repulsion

If our objective function consisted only of springs of rest length zero, then the globally

optimal drawing would assign all vertices to a single point. Making the rest lengths non-

zero would ameliorate the situation somewhat, but edge springs alone are insufficient to

produce an acceptable drawing. For example, let us consider the three-vertex path where

V = {1, 2, 3} and E = {(1, 2), (2, 3)}. A globally optimal drawing would space the

vertices uniformly along a line. In the absence of a force that involves vertices 1 and 3,

these two vertices could even be assigned to identical coordinates.

As we have discussed, we reject Kamada and Kawai's solution of springs for all node

pairs because of the impractical time and space requirements of the preprocessing step.

Instead, we introduce vertex-vertex repulsion terms into the physical model.

In Eades's force model, vertices repel each other as if they were like-charged particles

acting in accordance with Coulomb's inverse-square law. Every pair of distinct vertices

Vj and Vj repel each other with a force whose magnitude is proportional to 1/IIX/ - Xyll

When two vertices have identical coordinates, the magnitude of the repulsion force goes

to infinity. We therefore disallow assignment of distinct vertices to identical coordinates.

If we ever encounter a drawing where this situation occurs, we randomly separate the

coincident vertices by a small distance.

Fruchterman and Reingold, concerned with reducing the number of arithmetic operations

per repulsion computation and preferring to avoid taking square roots, use a force law that

is inverse rather than inverse square. The magnitude of the repulsion force in their model

is proportional to 1 /I lx/ - X/l I.

Now, we can discuss the constants of proportionality in Fruchterman and Reingold's

model. Fruchterman and Reingold define the constant k to denote the rest length of an

edge. They choose their constants of proportionality for the spring and repulsion laws so

that, when the length of an edge is k, then the spring and vertex-vertex repulsion forces

exerted by the endpoints cancel out. In other words, two vertices joined by an edge, in

the absence of additional forces exerted on them, exert no net force when the distance

between them is exactly k. When they are closer, the repulsion is stronger than the spring

and pushes them apart; when they are further, the spring is stronger and pulls them
towards each other.

The constants of proportionality are 1/k for the quadratic spring force and k2 for the

inverse vertex-vertex repulsion force. When the two endpoints of an edge are distance k

apart, both forces have magnitudes of k and cancel each other out.

One issue that receives little attention in the force-directed graph drawing literature is that

vertex-vertex repulsion forces serve two distinct purposes. One is to avoid vertex

overlap. It is not enough that vertices be assigned distinct coordinates; since vertices are

generally drawn as rectangles or ellipses with information inside them, it is preferable that

they be drawn far enough apart from each other to be legible. The other purpose is to

distribute vertices uniformly throughout the drawing space. This second goal is quite

different from the first, and is generally a lower priority that has more to do with

aesthetics—e.g., display of symmetry—than with legibility.

While the magnitude of the vertex-vertex repulsion force does decrease as a function of

the distance between the vertices, the long-range effects of an inverse force law like that

of Fruchterman and Reingold can be too strong, resulting in pockets of undesirably high

local density. We therefore split the vertex-vertex repulsion force into a stronger short-

range force and a weaker long-range force. When the distance between two vertices is

less than k, we use an inverse repulsion law; when the distance exceeds k, we use a

weaker inverse-square law. In order to achieve computational stability, we make the
magnitude of the repulsion force continuous at k.

This way of splitting the forces is admittedly inelegant, but is a first step towards adapting

the concept of vertex-vertex repulsion to address the distinct issues of avoid vertex
overlap and distributing vertices uniformly.

We use the same constants of proportionality as Fruchterman and Reingold for the spring

forces (1/k) and the short-range inverse repulsion (k2). To achieve continuity, we use a

constant of k for our long-range inverse-square repulsion law.

In Chapter 9, we will discuss how node shape and size affect the vertex-vertex repulsion

law. In Chapter 8, we will also discuss the computational consequences of choosing a

weaker or stronger repulsion law, and how we can use a time-dependent gradient to

improve performance.

5.2.3. Vertex-Edge Repulsion

In the force-directed models we have discussed, all of the forces involve vertex pairs.

Sometimes these forces allow a vertex to be very close to an edge. When an edge is

short, then the vertex-vertex repulsion will probably push vertices away from it. When an

edge is long, however, the vertex-vertex repulsion may not prevent a vertex from being

very near the edge, since it can do so without being that close to either of the endpoints.

Our concern is with vertex-edge overlap. If a vertex overlaps an edge or is placed very

close to it, then it becomes difficult or impossible to determine if the edge is incident to

that vertex. Hence, we need a strong short-range vertex-edge repulsion term to avoid this

situation. Since we are not using vertex-edge repulsion to spread out the vertices

uniformly, we do not need the force to be long-range at all. We do, however, need to

make the repulsion force continuous so that we have computational stability.

We consider two cases for vertex-edge repulsion. In the first case, the point on the edge

closest to the vertex is one of the endpoints. In the second case, the point closest to the

vertex lies strictly between the endpoints.

In the first case, our vertex-edge repulsion force acts much like the short-range inverse

vertex-vertex repulsion force acting on the vertex and the endpoint nearest to it. The only

difference is that, in order to make the vertex-edge repulsion force both short-range and

continuous, we subtract k from the magnitude of the force. Accordingly, the magnitude

of the force is CveCC^/x) - k) when x, the distance between the vertex and the closer

endpoint, is less than k (we will discuss Cve in a moment). This force pushes the vertex

and the endpoint closest to it away from each other; it does not affect the further endpoint.

Indeed, it only amplifies the vertex-vertex repulsion force that the two vertices already

exert on each other. We need this force, however, to ensure continuity with the second

case.

The second case is more complicated. First, we compute the distance X between the

vertex on the edge by projecting the former onto the latter. Let us denote the vertex by v,

the edge by e, and the projection of v onto e (that is, the point on the edge closest to v) by

p. Let a = lip - *(from(e))ll / llx(to(ej) - x(from(ej))ll. By assumption, a e [0, 1];

the boundary situations (a = 0, a = 1) represent the first case, where the point on the
edge close to v is an endpoint.

We can now describe the vertex-edge repulsion force law for the second case. Vertices V

and from(e) repel each other with a force of magnitude (1 -cOCveWkVxJ-k).

Symmetrically, vertices v and to(e) repel with a force of magnitude (cOCveftkVxJ-k). As

we can see by setting a to 0 or 1, the boundary cases are continuous.

The constant Cve is a non-negative weight that reflects the priority of avoiding vertex-

edge overlap. We have found that a small value of cve works well; our own
implementation sets it to 0.1.

5.3. Constraints

Constraints can be either equalities or inequalities in the output variables. A drawing that

satisfies all of its constraints Ci, C2)... is said to be feasible, and the set of such drawings

is said to be the feasible space of drawings. If the set of constraints is empty, then all

drawings are feasible, and the problem is said to be unconstrained.

5.3.1. Penalty Functions

For every constraint Cj, we will require an associated penalty function p, that measures

the distance of a drawing to the nearest drawing that satisfies C,-. We can define such

penalty functions for both equality and inequality constraints. The requirement that these

penalty functions exist allows us to use the method of exterior penalties to perform

constrained optimization. We will describe this method in Chapter 8.

5.3.2. Constraints versus Preferences

It is often possible to quantify aesthetic criteria either as constraints or as terms in the

objective function. In the latter case, the criteria become preferences that are combined

and prioritized according to their relative weights. The choice of whether to represent an

aesthetic criterion with constraints or preferences is key to the modeling problem, so we

will discuss the advantages and disadvantages of each type of formulation.

For example, we may have two vertices that are very strongly related. A simple way to

express the strength of their relationship in the drawing is to constrain them to lie within a

certain distance of each another. Alternatively, we could represent this strength using a

spring term in the objective function with a high spring constant.

The main advantage of constraints is their simplicity. If we have non-negotiable aesthetic

criteria and can express them as boolean predicates, then constraints provide a

straightforward mechanism for doing so. Typical constraints address minimal separation

between nodes, drawing boundaries, clustering, and edge direction.

Constraints, however, have two major disadvantages. First, their binary nature limits

their expressiveness. In the example above, we can use constraints to specify a minimum

node separation, but our formulation does not favor larger distances over small ones. The

second problem is more serious: they generally add complexity to the optimization

process and thus slow it down. Here, we must accept that there is a trade-off between

speed and flexibility.

6. Computing the Gradient Efficiently

-3v
The 6(n) running time of most of the published graph drawing algorithms effectively

limits their domain to very small graphs. To draw larger graphs, we must dramatically
reduce the running time.

In this chapter, we focus on making the computation of the gradient as efficient as

possible. In particular, we attack the bottleneck of the published force-directed

approaches—the 0(n) computation of repulsion forces. After discussing two simple but

problematic methods that reduce this computation to 6(n), we discuss more sophisticated

approaches drawn from the many-body simulation literature.

6.1. Computing the Gradient Naively

In order to compute the gradient of a drawing as we defined it in the previous chapter, we

need to take a sum of 0(m) spring forces, G(n2) vertex-vertex repulsion forces, and

6(nm) vertex-edge repulsion forces. Even without considering vertex-edge repulsion

forces, we would require 0(n2) time to compute the gradient straightforwardly—that is,

by summing all of the spring and vertex-vertex repulsion forces to compute the net force
acting on each vertex.

A running time of 0(n) or 0(nm) for a single gradient computation severely limits the

size of graphs that we can draw. For dense graphs—that is, where m is 0(n2)—we have

little hope of doing better unless we can somehow summarize the graph in a smaller

representation. For example, we could take a divide-and-conquer approach that partitions

the vertices into subsets, draws each subset independently, and then draws the graph of

subsets as if each subset were a single large vertex. This partitioning problem, however,

is beyond the scope of this dissertation. We thus assume we cannot avoid computing the

spring forces, and this computation requires 0(m) time.

For sparse graphs, however, there is a wide gap between 0(m) and 0(n2). Indeed, for

sparse graphs, we spend most of the computation on the repulsion forces—that is,

assuming that we compute these forces naively. Accordingly, we devote our efforts to

computing these repulsion forces more efficiently.

6.2. Simple 0(n) Approximations for Computing Vertex-Vertex Repulsion

In the force-directed graph drawing literature, two techniques appear for approximating

the computation of the vertex-vertex repulsion forces. Fruchterman and Reingold

describe a "grid variant" of their algorithm that ignores repulsion forces between vertex

pairs whose distance exceeds a threshold of 2k, using an auxiliary grid structure to reduce

computation. As we discussed in the previous chapter, k is the rest length of an edge—

that is, the distance at which the two endpoints of an edge exert no net force on each other

because the spring and repulsion forces cancel out. Fruchterman and Reingold claim that

this approximation produces drawings that are "nearly equivalent" to those obtained

without approximation. They note that this approximation of the repulsion forces has a

running time that is 0(n) when the vertex distribution in the drawing area is

"approximately uniform"; the efficiency of their grid structure depends on the uniformity

of the distribution. Coleman and Parker suggest the alternative approach of "centripetal

repulsion"—that is, repulsion from the centroid of the drawing. The cost of this

approximation is 6(n) time (and no additional space) regardless of the distribution of

vertices.

6.2.1. Distance Cut-Offs

Distance cut-offs are a conceptually simple approach to approximating vertex-vertex

repulsion. Since the magnitude of the vertex-vertex repulsion forces decays rapidly with

distance between the two vertices, we can ignore repulsion between far-away vertices

and only incur a small additive error in the gradient. Moreover, we can implement

distance cut-offs, as Fruchterman and Reingold do, with a straightforward data-structure:

we partition the drawing space uniformly into a grid of square cells where the side of each

square is the cut-off distance. Fruchterman and Reingold choose their constants so that

k2!! is proportional to the area of the drawing space, making the number of grid cells—

and hence the additional space required for the grid—6(n).

We can easily determine a bound on the maximum additive error caused by using

distance cut-offs. In Fruchterman and Reingold's force model, the magnitude of the

repulsion force between nodes Vj and Vj is k2 / llx/ - Xyll. When llx/ - Xyll = 2k, this force

has a magnitude of k/2. Hence, the maximum additive error in computing the magnitude

of each repulsion force is k/2.

While the additive error resulting from distance cut-offs is small, they are unsatisfactory

for two reasons. The first is basic: by ignoring long-distance repulsion forces, we inhibit

most of the effect that vertex-vertex repulsion would normally have in distributing the

vertices uniformly throughout the drawing space. The second is that distance cut-offs

cause problems for the optimization procedure. In Fruchterman and Reingold's model,

the cut-offs make the force model discontinuous wherever the the distance between two

vertices is exactly 2k, since the magnitude of the repulsion force jumps from k/2 to 0.

Such discontinuities can cause a optimization procdure to oscillate around them. We can

remove the discontinuties using the technique we applied to our short-range vertex-edge

repulsion force—that is, we can make the magnitude of the vertex-vertex repulsion force

1iC/\\Xi- X/ll - k/2 so that it is continuous at l|jr# - Xyll = 2k. Fruchterman and Reingold's

algorithm handles the discontinuties by dampening forces using a "cooling schedule", but

there is no guarantee that the drawing to which it converges will be locally optimal.

We can lessen the consequences of distance cut-offs by increasing the cut-off distance.

Assuming that the graph is connected, there always exists a cut-off distance that has no

effect on the objective function—namely, any value greater than the diameter of the

optimal drawing. Doing so, however, defeats the entire purpose of the approximation,
which is to reduce computation.

Indeed, the efficiency of Fruchterman and Reingold's grid variant hinges on the

assumption that the number of vertices within the cut-off radius of a vertex is, on average,

9(1). If we further assume a uniform distribution of vertices in the drawing space, then

this requirement implies a 6(k) cut-off distance, since the expected number of vertices

within a cut-off radius of r is 0(r2/k2). As a result, modifying the grid variant to use a

cut-off distance of r increases the running time (assuming uniform vertex distribution) to

approximately compute repulsion forces from 9(n) to 9(r2n/k2), where r is at most

O(kVF). If r is greater, then we may as well use the naive 9(n2) approach.

The assumption that the vertex distribution will be "approximately uniform" is, however,

somewhat questionable. As shown in Figure 6.1, a cycle of n vertices with edges of

length k requires a drawing area of 9(k2n2) to be drawn as a regular polygon—which is

accepted as the optimal way to draw an undirected cycle. Fruchterman and Reingold's

grid variant can handle this situation in a few ways. One possibility is to impose a

drawing space of area 9(k2n), in which case the boundary will severely constrain the

drawing. If the area of drawing space is 9(kV), then there is the question of choosing

the number of grid cells. If there are 9(n) grid cells, then, as the drawing approaches its

optimum, each of the 9(Vn) cells on the perimeter will contain 9(Vn) vertices, making the

1.5» total running time to compute repulsion forces 6(n "). In order to reduce the average

number of vertices in a non-empty cell to 0(1), we would have to use 0(n) cells—

bringing the running time up to 0(n).

■ approximately (1/rc) nk-

Figure 6.1: Cycles have highly non-uniform vertex distribution

Finally, although we can use distance cut-offs for drawings in higher-dimensional spaces,

we can only do so efficiently if the vertex distribution is approximately uniform in the

space. In any space, distance cut-offs only give us an efficient procedure if the drawing

occupies 0(n) grid cells and the average number of vertices in each non-empty cell is

0(1).

6.2.2. Centripetal Repulsion

An alternative approach to approximating the vertex-vertex repulsion forces is to replace

them by a repulsion from the centroid of the drawing. As Coleman and Parker point out,

centripetal repulsion can sometimes work as a substitute for vertex-vertex repulsion.

Our notion of centripetal repulsion is slightly but significantly different from that of

Coleman and Parker. We see centripetal repulsion as an extreme case of monopole

approximation—that is, we consider a vertex's interaction with the n-1 other vertices as

if the latter were consolidated into a single large vertex at their centroid. Hence, we

modify Coleman and Parker's approach in two ways. First, vertices experience repulsion

from the centroid of the n-1 other vertices, rather than from the centroid of all n vertices

in the drawing. Second, the repulsion force is mutual—that is, the centroids are also

repelled by the vertices. This latter modification ensures that the sum of all repulsion

force vectors in the drawing always cancels out, and hence that the centroid of the

drawing will not drift. Like distance cut-offs, centripetal repulsion generalizes to
drawings in higher dimensional spaces.

Centripetal repulsion has several immediate advantages over distance cut-offs. The time

necessary to compute all of the centripetal repulsion forces is 6(n) regardless of the

vertex distribution, and there is no need to maintain an auxiliary grid data structure.

Centripetal repulsion does not suffer from the discontinuities of distance cut-offs; in fact,

the further a vertex is from the centroid of its neighbors, the more accurate the

approximation. Also, for drawings in higher dimensional spaces, the cost of computing

centripetal repulsion only increases linearly with the number of dimensions. Indeed, it is

a more elegant model, both in concept and in the implementation.

Unfortunately, its inaccuracy can be far more severe than that of distance cut-offs. Let us

consider the 15-vertex binary tree drawn optimally in Figure 6.2. Using centripetal

repulsion, we obtain the bizarre drawing in Figure 6.3. Because vertices don't repel each

other directly, it is even possible for them to be assigned to identical coordinates. A

smaller but still significant problem with centripetal repulsion is that it distorts the
drawing near its centroid.

@r^

Figure 6.2: Optimal Drawing of Tree

Figure 6.3: Same Tree Drawn using Centripetal Repulsion

We might address this problem by combining distance cut-offs with centripetal repulsion,

but this approach would be messy. It would also suffer from the problems of both

approaches—for example, degradation in speed when the vertex distribution is not close

to uniform, and distortion near the centroid. Instead, we turn to the many-body

simulation literature for a better solution.

Interestingly, the two approaches we have discussed, distance cut-offs and centripetal

repulsion, demonstrate the two distinct purposes of the vertex-vertex repulsion force.

Distance cut-offs focus only on the short-range repulsion for avoiding overlap, while

centripetal repulsion helps make the vertex distribution more uniform. As we will see,

we can accomplish both of these goals by combining our distinction between short- and

long-range repulsion with an efficient tree-code.

6.3. Approximating Vertex-Vertex Repulsion Forces in 6(n log n) Time

The problem of computing the pair-wise interactions among a large collection of particles

is a familiar one to physicists. Indeed, their methods for approximating gravitational and

electrostatic forces are directly relevant to our problem.

Two popular procedures to compute this approximation are Greengard and Rokhlin's Fast

Multipole Method (FMM) [GR87] and the Barnes-Hut algorithm [BH86]. Both rely on

partitioning the set of particles hierarchically into a tree of cells. Barnes-Hut replaces

most particle-particle interactions with particle-cell interactions, while FMM computes a

series of cell-cell interactions. Although worst-case running-time of FMM is

asymptotically better than that of Barnes-Hut—6(n) versus 6(n log n)—it has much

more overhead and is also more complicated to implement. The performance and

accuracy of Barnes-Hut are more than adequate for our purposes.

We now describe how the Barnes-Hut algorithm works for particles in two dimensions.

The algorithm consists of two phases. In the first, we partition the drawing space by

creating a quad-tree of rectangular cells. In the second, we traverse the quad-tree to

approximate the net force acting on each particle. The algorithm generalizes to spaces of

higher dimension, and is commonly applied to problems in three dimensions.

6.3.1. Building the Quad-Tree

In the first phase, we insert all of the particles into a quad-tree. A quad-tree is a

hierarchical partitioning of a rectangle, where each internal node of the tree represents a

rectangle that has been split into four congruent subrectangles (i.e. bisected horizontally

and vertically) and each leaf is an undivided rectangle. We refer to both internal nodes
and leaves of the quad-tree as cells.

We begin with a single empty cell that represents the bounding rectangle of the particles.

If we do not already know the bounding rectangle, we can compute it in 6(n) time, where
n is the number of particles.

We then insert the particles into the quad-tree sequentially. When we insert a particle, we

begin at the root of the quad-tree. We increment the number of particles stored in that

cell by one, and also update that cell's centroid. If the cell was empty, then its centroid is

the position of the inserted particle; otherwise, we take a weighted average of the

previous centroid and the new particle's position. Now there are three cases. If the cell

was an empty leaf, then we are done with the insertion. If the cell is an internal node, we

recursively insert the particle into the subcell corresponding to the rectangle that contains

the particle. If the cell was a leaf that already had a particle in it, then we make the cell an

internal node, splitting it into four subcells. We then recursively insert both of the cell's
particles into the appropriate subcells.

Figure 6.4 illustrates how we partition the bounding rectangle of the particles into cells

such that each cell contains at most one particle. Figure 6.5 shows a quad-tree that

represents this partitioning. The children of a cell represent, in order, the northwest,
northeast, southwest, and southeast quadrants of that cell.

Our insertion procedure maps each particle to a unique leaf in the quad-tree. There are

also empty leaves in the tree—possibly as many as three for each internal node of the tree.

In total, the space requirement for the quad-tree is 0(n).

The time required to create the quad-tree depends on its height. Inserting a particle

requires time proportional the distance from the root to the leaf that contains that particle.

We note that, even if a subsequent insertion moves the particle further down the tree, the

total time spent on inserting that particle is still proportional to its ultimate distance from

the root. Hence, the total time spent on creating the quad-tree is proportional to the sum

of the heights of its leaves.

0 0 ©
0

©

3

0

0 ©

G
0

0

o

0

fl

Figure 6.4: Partitioning the Bounding Rectangle into Cells

Figure 6.5: A Quad-Tree Representing the Partitioning

Clearly, the height of the quad-tree has a lower bound of &(log n), giving us a

corresponding lower bound of Q(n log n) for creating the tree. We could, however,

have a quad-tree of arbitrary height h, and such a tree would require 6(nh) time to create.

Such a highly imbalanced tree, however, imply that the smallest distance between two

particles was 0(2"hs), where S is the length of the longer side of the bounding rectangle

of the particles. We are not, however, dealing with an arbitrary distribution of particles in

space. Because we are dealing with graph drawing, we can reasonably assume that there

is a constant lower bound on the smallest distance between particles. We can also assume

that s is O(n), the bounding case being a path of n vertices drawn along a straight line.

Hence, each leaf has an area that is at least Q(1/n) fraction of the area of the bounding

rectangle. This lower bound implies that the height of the quad-tree is 0(log n), making

the time to create it 6(n log n).

6.3.2. Computing the Force on Each Particle

The performance gain in the Barnes-Hut algorithm comes from computing the force

exerted on a particle by other far-away particles with a monopole approximation—that is,

treating collections of particles as if they were clustered at their centroids. We do have to

take care, however, not to make gross errors using this monopole approximation.

The procedure for computing the force acting on a particle works as follows. We first

find the leaf cell of the quad-tree associated with that particle. We then compute the force

exerted by each of that cell's siblings on the particle. When then take the leafs parent in

the tree and compute the force exerted by each of the parent's siblings on the particle.

We do the same with the parent's parent, and so forth, until we reach the root.

How we compute the force that a cell exerts on the particle depends on whether the leaf

cell containing the particle is well separated from the cell. Barnes and Hut define this

concept as follows: a particle and a cell are well separated if the ratio r/D is less than 6,

where r is the length of a side of the cell, D is the distance between the particle and the

centroid of the cell, and 6 is a fixed accuracy parameter between zero and one. We will

discuss the choice of 6 in a moment.

If a particle is well separated from a cell, then we compute the force exerted by the cell as

if all of its particles were located at the centroid of the cell. Otherwise, we recursively

compute the force exerted by each of the subcells of that cell on the particle.

The reason for insisting that cells be well separated for the monopole approximation is

that using centroids for cells that are not well separated can result in unbounded errors.

Two particles that are very close to each other may end up in leaf cells that share a border

but are nonetheless far apart from each other in the quad-tree.

Barnes and Hut suggest setting 0 to be approximately 1. Salmon has shown the total

number of force computations necessary is 0(Q* n log n) [Sa90], and that the errors in

the force computation can be unbounded if 6 > d"%, where d is the number of dimensions

of the space [SW94]. If d = 2, we must pick 9 < 0.707. We have had good results with

0 = 0.7 is more than sufficient. In particular, our algorithm does not suffer from the

discontinuities introduced by reorganizing the quadtree as vertices move in the drawing.

We should note that the above error analysis assumes that the force law is an inverse-

square law, as is the case in gravitation and electrostatics. In practice, we have found that

the Barnes-Hut algorithm works even when the force law is inverse. In any case, our

long-range repulsion force is inverse-square.

We conclude this section with an example: we use the Barnes-Hut algorithm to compute

the force acting on particle 1 in Figure 6.4.

The siblings of the associated leaf cell are the leaf cell containing particle 8; the non-leaf

cell containing particles 2, 3, and 4; and the leaf cell containing particle 10. The

computation is trivial for the two siblings that are leaves; we just compute the ordinary

particle-particle forces.

The non-leaf sibling requires more work. Since it is not well separated from the leaf cell

containing particle 1, we have to compute the forces that its children exert on particle 1.

The non-empty children are the non-leaf cell containing particles 2 and 4, and the leaf

cell containing particle 3. Again, the leaf cell computation is trivial, but again the non-

leaf cell is not well-separated from the leaf containing particle 1. Hence, we look at its

non-empty children, which are both leaves.

Now, we look at the siblings of the parent of the leaf cell containing particle 1. These are

the non-leaf cell containing particles 5, 6, 7, 9, and 11; the leaf cell containing particle

14; and the non-leaf cell containing particles 12, 13, and 15. Finally, we see how the

quad-tree helps: both of the non-leaf cells are well separated from the leaf cell containing

particle 1. Hence, we compute the force that each exerts in constant time by treating each

cell as if all of its particles were at its centroid.

Since the parent of the parent of the leaf cell containing particle 1 is the root of the quad-

tree, we are done.

6.3.3. Applying Barnes-Hut to Compute Vertex-Vertex Repulsion Forces

The vertex-vertex repulsion in our physical model considers a particle system like those

that Barnes and Hut had in mind for their algorithm. Our force law does not correspond

exactly to the physical laws of gravitation or electrostatics; nonetheless, the Barnes-Hut
algorithm works very well to approximate it.

We do however, make one minor modification. As we discussed in the context of

centripetal repulsion, we would like the net force on the centroid of the drawing to be

zero, since all of the forces should cancel each other out. Unfortunately, the Barnes-Hut

algorithm does not make us such a guarantee. We address this problem much the way we

did for centripetal repulsion: we make all forces mutual. In other words, a particle exerts

a repulsion force on a cell equal in magnitude to the force that the cell exerts on the

vertex. If the cell contains c vertices, then each of the vertices experiences 1/c of this
force.

6.4. Computing Vertex-Edge Repulsion Forces

We could also modify the Barnes-Hut algorithm to compute vertex-edge repulsion. The

modifications, however, would not be trivial: we would have to break up the line

segments representing edges into sub-segments such that each leaf cell of the quad-tree

would contain at most one sub-segment. The quad-tree would require a space

proportional to the number of sub-segments, which could be somewhat larger than the

number of edges. In addition, we would have to take more care with the force

computation, since the three cases for vertex-edge repulsion are more complicated than
the single law for vertex-vertex repulsion.

A key difference, however, between vertex-vertex and vertex-edge repulsion is that the

latter is a purely short-range force. Using Barnes-Hut is overkill, since we lose no

accuracy by ignoring vertex-edge pairs that are far apart. In fact, we can use distance cut-

offs, taking an approach based on Fruchterman and Reingold's grid variant.

Like Fruchterman and Reingold, we partition the bounding rectangle of the drawing space

into a grid of square cells such that the side of each cell is k and store in each cell a list of

the vertices it contains. If the vertex distribution is sufficiently uniform, then the number

of cells will be proportional to the number of vertices; otherwise, we can use a sparse

matrix representation in which non-empty cells do not take up memory.

Once we have computed the grid, we iterate over the edges, computing the repulsion

force between it and the vertices that are near it. An edge may not be entirely contained

in one cell, in which case we have to iterate over all of the cells it occupies. Indeed, the

vertices we have to consider are precisely those that are either in the cells occupied by the

edge or are in cells that border those occupied by the edge. If an edge is of length O(k),

then it will occupy 0(1) cells.

Unlike Fruchterman and Reingold, we do not have to contend with the inaccuracy caused

by using distance cut-offs. Our vertex-edge repulsion force is short-range by design, so

there is no inaccuracy.

We do, however, suffer the same performance problems that they do if the vertex

distribution is highly non-uniform. One heuristic to address this issue is to ignore vertex-

edge repulsion in the early iterations. By doing so, we solve several problems. By the

time we start computing vertex-edge repulsion, the vertex distribution corresponds

roughly to what it will be in the final drawing. Waiting until later iterations to introduce

vertex-edge repulsion also helps us avoid poor local minima. If, after a large number of

iterations, there are still edges with large numbers of vertices within distance k of them,

then we must resign ourselves to the fact that the drawing is dense and requires more

work. In practice, the number of vertices within distance k of an edge is 0(1), making

the time to compute vertex-edge repulsion forces 0(m).

7. The Optimization Procedure

So far, we have concerned ourselves only with the efficiency of computing the gradient.

The other factor that determines performance is the number of gradient computations that

our optimization procedure must perform before converging to a local minimum.

As we discussed in Chapter 4, we can think of the graph drawing problem in terms of

either a force model or an energy model. In the previous chapter, we opted for the

former, describing how we encapsulate the aesthetic criteria with force laws. Now it

proves convenient to imagine the sum of these force vectors as the negative gradient of an

energy function that we are trying to minimize. We refer to this implicit energy function
as the objective function.

We restrict our attention to first-order continuous optimization procedures. Such

procedures are iterative: on each iteration, they improve the drawing (which is a vector in

R for two-dimensional drawings), translating it by some vector p e R2n. We break

down the problem of computing this vector into two sub-problems: that of choosing a

search direction—that is, the orientation of p—and that of determining the step size, the
magnitude of p.

The algorithms of Eades and of Fruchterman and Reingold use variations of the method

of steepest descent. Accordingly, we first discuss this straightforward method for

choosing the search direction. We then describe how to compute the search direction

using the conjugate gradient method. Finally, we discuss the problem of computing the
step size.

7.1. The Method of Steepest Descent

The method of steepest descent, also known as Euler's Method in the context of solving

differential equations, uses the negative gradient as the search direction. In the context of

force-directed graph drawing algorithms, moving along the negative gradient simply

means moving each vertex in the direction of the net force exerted on it.

Eades's optimization procedure uses the method of steepest descent as is. Fruchterman

and Reingold start by computing the negative gradient, but then, instead of computing a

step size, they truncate each vertex's components of the search direction independently in

order to limit the maximum distance that a vertex can move on that iteration. They

determine this maximum distance according to a "temperature" that is a decreasing

function of the number of iterations performed thus far.

The main selling point of the method of steepest descent is its simplicity. It allows us to

compute a search direction with only one gradient computation. Moreover, as long as we

take some care in choosing the step size and have sufficient numerical precision, the

method of steepest descent will always converge to a local minimum, regardless of our

starting point.

Unfortunately, although the method of steepest descent does eventually converge to a

local minimum, it may take a large number of iterations to do so. We can make this

statement more formally for the case that the objective function is quadratic and positive

definite—that is, its Hessian matrix of second derivatives is constant and has only

positive eigenvalues. In this case, the method of steepest descent is only guaranteed to

converge at a rate that is linear in the condition number of the Hessian, which is defined

as the ratio between the smallest and largest of its eigenvalues. We refer the reader to

Gill, Murray, and Wright [GMW81] for a thorough analysis of the convergence rate of

the method of steepest descent.

In our own case, the objective function is neither quadratic nor positive definite;

nonetheless, the method of steepest descent slows down when the condition number of

the Hessian is large.

By always following the negative gradient, the method of steepest descent models the

local behavior of the objective function as linear. Since non-degenerate linear functions

do not even have local minima, this model is obviously a crude one. While the method of

steepest descent performs reasonably well when we are far away from a local minimum—

where the objective function behaves most linearly—its performance degrades rapidly as

we approach the local minimum.

Often, the method of steepest descent will find itself stuck in a "trough," a situation we

depict in Figure 7.1. The little black arrows in the figure indicate the direction of the

negative gradient, which each of the thick gray arrows indicates the progress on a single

iteration. Let us assume that we are using the maximum possible step size that will

decrease the objective function. In that case, the method of steepest descent will bounce

back and forth, making very slow progress.

In order to do better than the method of steepest descent, we need a more sophisticated

model of the objective function.

Figure 7.1: Steepest Descent Makes Slow Progress in a Trough

7.2. The Newton Direction

The method of steepest descent is based on a linear model of the objective function—that

is, a model in which the gradient at each iteration is treated as a constant. We now

consider an approach that uses a quadratic model of the objective function. Most of the

following discussion paraphrases that of Gill, Murray, and Wright [GMW81].

We construct this quadratic model by taking the first three terms of the Taylor series of

the objective function about the current drawing. We denote the objective function by F,

the current drawing by D, the gradient vector by F, and the Hessian matrix of second

derivatives by F". The first three terms of the Taylor series give us the following
expansion:

F(D + p) B F(D) + F'(D) »p + Mp • F"(D)p,

where p is the displacement from the current drawing.

Since we are assuming that the Hessian F"(D) is constant, we will denote it by H. If H is

positive definite, then there is a unique global minimum that we can obtain by

minimizing the following quantity O with respect to p:

<£(p) = F(D + p) - F(D) = F'(D) »p + Vip • (Hp)

Finding the minimum of <I> is, in turn, equivalent to solving the linear system of

equations:

Hp=-F(D)

The value of p that solves this linear system is called the Newton direction.

We could solve this linear system of equations to obtain the Newton direction.

Unfortunately, we would need 0(n) time and space just to compute H, let alone to solve

the system. What we would like is a faster technique that approximately follows the

Newton direction without requiring us to compute H.

7.3. The Conjugate Gradient Method

In order to achieve the effect of following the Newton direction without actually

computing H, we turn to the conjugate gradient method. The conjugate gradient method

is an iterative technique that computes the Newton direction for a quadratic function

whose Hessian is positive definite. We first discuss the conjugate gradient method for

quadratic, positive definite functions and then generalize it to handle more general

functions.

We define a collection of linearly independent vectors po, Pu P&--- to be our search

directions and define Pj to be the vector space spanned by po, Pi, Pa-- Pi- We will

discuss how to compute these vectors in a moment. We also have a collection of vectors

Xo, Xi, X&... that represent successive approximations to the location of the minimum of

<E>. We define X\ to be the vector that minimizes <E> over the manifold Pj. Hence, for a
On

problem of 2n independent variables, X^n is the true minimum of O, since P2n = R •

Finally, we define a sequence of gradients go, gu flfa... such that g\ - V <£(X/).

By choosing the search directions to be mutually conjugate with respect to H—that is, so

that they satisfy the condition V i, j, such that i * j: p; • (Hpy) = 0—we obtain the

simplification: X/+* = X\ + a\ p/, where Of/ = - (flT/ • P/) / (p/ • (Hp/)). Instead of using H

to compute a/, we can, as we will discuss in section 7.5, find it with a line search.

The remaining question is how we choose the search directions. We set Po to be the

direction of steepest descent. We obtain the remaining vectors as follows:

Pk = -gk + (lig/fll / \\gk-i\\)2Pk-i

A proof that these search directions are mutually conjugate can be found in Gill, Murray,
and Wright's text [GMW81].

Assuming that the objective function is quadratic, its Hessian is positive definite, and the

line search is exact, then we obtain an exact minimum in at most 2n conjugate gradient
iterations.

To get an intuition for how the conjugate gradient method outperforms steepest descent,

let us return to the example in Figure 7.1. As we can see from the picture, llgrN / ll^oll is

approximately 1. For simplicity, we will assume that the magnitudes of both gradients

are identical. In that case, the second iteration, rather than following the negative

gradient gh uses as its search direction (shown with a thick black line) Pi = - (g0 + gi).

This summation, as we can see in Figure 7.2 cancels out the vertical oscillation that slows

down steepest descent, allowing us to escape from the trough in only two iterations.

While this example is unrealistically simple, it does provide an intuition for why the

conjugate gradient method significantly outperforms steepest descent.

For a quadratic, positive definite objective function, the conjugate gradient method has

rate of convergence proportional to the square root of the condition number of the

Hessian (as compared to steepest descent, which is linear).

Pi = -(9o+9i)

/* / f /* *

Figure 7.2: The Conjugate Gradient Method Escaping a Trough

7.4. The Conjugate Gradient Method with Restarts

Unfortunately, some assumptions that we made about the objective function do not, in

fact, hold. The objective function is not quadratic; the Hessian may not be positive

definite; and an exact line search is impractical. Moreover, we have no desire to perform

2n conjugate gradient iterations, since 2n conjugate gradient iterations would require

e(nm + n2 log n) time.

In light of these issues, we modify the conjugate gradient method by restarting it

whenever the search direction is not a descent direction, i.e. its dot product with the

gradient of the objective function is non-negative.

While this heuristic undermines theoretical claims about our method, experiments show it

to be a significant improvement over the method of steepest descent. We will present an

empirical comparison between the conjugate gradient method with restarts and the

method of steepest descent in Chapter 11.

7.5. Computing the Step Size

Whatever our method for choosing the search direction, we need a procedure that

computes an admissible step size. We refer to such a procedure as a line search, since it

searched along the line defined by the search direction. We define a step size to be

admissible if it satisfies the following criteria:

1) It is positive.

2) It causes the objective function to decrease.

3) The angle between the new gradient (after moving the drawing) and the old gradient

has an angle greater than or equal to some constant y, where 0 < y < n 12.

The first criterion simply enforces the search direction; we are interested in moving along

the search direction, not opposite to it. The second criterion prevents us from taking steps

that are too large, and ensures that each iteration of the optimization procedure will

actually improve the drawing. Finally, the third criterion prevents us from taking steps

that are too small. The value of y determines the accuracy of the line search: a larger

value corresponds to a more accurate search. We set y = cos" (0.5) in our

implementation. As long as the step size satisfies these three properties, then we will

converge to a local minimum.

To compute an admissible step size, we first bracket the step size—that is, determine a

finite interval that contains an admissible step size. Since we already have zero as the

lower bound of the interval, we only have to compute an upper bound. We make a guess,

and then keep doubling it until either it is an admissible step size or the dot product

between the gradient obtained after using it as a step size and the old gradient is negative.

In the latter case, we have to search the interval to find an admissible step size; we can do

so using bisection, polynomial interpolation, or other line search techniques.

An exact line search finds a stationary point along the search direction—that is, a point

where the gradient is orthogonal to the present one. The benefits of using an exact line

search, however, do not justify the amount of computation necessary to find the stationary

point. In fact, we are ultimately limited by the floating point precision of the machine.

But it is not even practical to perform a particularly accurate line search, since our overall

computational cost is proportional to the number of gradient computations performed per
line search.

Eades takes the simplest approach: he uses a fixed step size. Unfortunately, there is no

guarantee that this step size is admissible. In particular, if it is too large, the optimization
may oscillate and never converge to a local minimum.

Our experiments showed, however, that a fixed step size often does very well in practice.

In fact, most of our sophisticated line search approaches slowed us down by increasing

the number of gradient computations per iteration. Determined to keep this number

small, we decided to compute the step size adaptively.

When we start our computation, we initialize the step size to be one. On each iteration,

we check if the current step size is admissible. If it is, we use it. If it is too small—that

is, if the angle between the gradient after taking the step and the current gradient is closer

to zero that an experimentally determined constant—then we keep doubling it until it is

not. We have thereby bracketed an admissible point. We then use bisection (we could

just have easily used quadratic interpolation) to find an admissible point on this interval.

The step size that we compute becomes the current step size, which we use as our first

guess on the following iteration. This adaptive procedure does a good job of staying

close to the optimal step size while performing a number of gradient computations that is

proportional to the logarithm of the ratio between the previous step size and the current
one.

8. Making the Gradient Time-Dependent

Thus far, we have treated the graph drawing problem as consisting of three somewhat

independent subproblems: defining the force laws that quantify the aesthetic criteria,

computing the forces so as to obtain the negative gradient of an implicit energy function,

and performing numerical optimization to obtain a local minimum with respect to this

energy function.

In this chapter, we consider strategies that make the gradient time-dependent—that is,

where we change the force laws from iteration to iteration. We use this time-dependence

in three ways. The first is to make the gradient smoother in the earlier iterations in order

to improve performance and avoid poor local minima. The second is to incorporate

constraints into our model by converting them into exterior penalties. The third is to

introduce additional degrees of freedom so that the drawing space has more maneuvering

room—e.g., turning a two-dimensional problem into a three-dimensional one—and then

to treat the original problem as a constrained problem in the larger space.

8.1. Making the Gradient Smoother in the Early Iterations

The performance of a first-order optimization procedure, such as steepest descent or the

conjugate gradient method, reflects the smoothness of the objective function. The less

that the objective function looks like a linear or quadratic function, the longer it takes for

an optimization procedure to converge. By making the force laws time-dependent, we

can mitigate the effects of the non-smoothness of our energy function.

The spring forces, as long as we model them with a low-order polynomial, tend to be

fairly well behaved. If we were to use a linear spring force law with a rest length of zero,

then the spring energies (that is, their contributions to the objective function) would all be

quadratic functions. Indeed, if we only had to contend with spring forces, we would

require relatively few iterations for the optimization procedure. Unfortunately, it does not

seem possible for us to do so without "densifying" the graph as Kamada and Kawai do in

their model, associating a spring with every pair of vertices. Hence, we are stuck with the

highly non-linear repulsion forces.

The vertex-vertex repulsion forces are poorly behaved both when the vertices are very

near each other and when they are far away. When they are near each other, the

magnitude of the repulsion force abruptly approaches infinity. When they are far apart,

the magnitude very slowly approaches zero. Both of these behaviors impede the

optimization procedure, but we can address them by making the gradient time-dependent.

8.1.1. Capping Spikes

Assigning two vertices to identical coordinates drives the magnitude of their repulsion

force to infinity. We, like Fruchterman and Reingold, handle the singularity arising from

this situation by randomly moving the vertices a small distance away from each other.

This perturbation strategy, however, ignores a larger issue—namely, that the objective

function behaves poorly in the neighborhood of the singularity. We refer to this region of

poor behavior as a spike. In the vicinity of a spike, the term of the gradient associated

with the spike dominates the overall gradient and thus causes the Hessian to be ill-

conditioned. Regardless of how we choose our search direction, we will find that the step

size becomes very small in the vicinity of a spike, since the optimization procedure must

slowly maneuver around it. Both linear and quadratic models of the objective function
are very inaccurate in the vicinity of a spike.

Spikes can also trap us in poor local minima. Because the objective function increases

dramatically in the vicinity of a spike, the spike can create a local minimum that could

easily be avoided if the optimization algorithm were able to jump over the spike.

Fruchterman and Reingold do not explicitly discuss the problems caused by spikes;

nonetheless, their "cooling schedule" addresses them implicitly. Their algorithm limits

the maximum vertex displacement per iteration as a linearly decreasing function of time,

which they call the "temperature" of the drawing. The effect of their approach is similar

to that of placing a time-dependent maximum on each vertex's component of the
gradient.

We take a slightly different approach. Rather than compute the gradient and then truncate

each of its components, we truncate each repulsion term's contribution to the gradient.

We enforce a maximum magnitude on each vertex-vertex and vertex-edge repulsion force

vector, without changing any of their directions, and make this maximum magnitude an

increasing function of the number of iterations. By capping the magnitudes of the

repulsion terms, we prevent spikes from interfering with the early iterations and possibly
trapping us in poor local minima.

A simple way to cap the magnitudes is to make the maximum magnitude proportional to

the number of iterations. This strategy is analogous to Fruchterman and Reingold's

temperature scheme. Alternatively, we could start off with a small cap and increase it as

the magnitude of the overall gradient decreases. Both strategies, like Fruchterman and

Reingold's temperature scheme, require experimentation to tune the constants.

We still have to use perturbation to break symmetry if two vertices have identical

coordinates or if a vertex and an edge are collinear, but at least we don't have to contend

with an ill-conditioned Hessian.

8.1.2. Strengthening the Long-Range Vertex-Vertex Repulsion Forces

Now that we have dealt with spikes, we address the other problem caused by vertex-

vertex repulsion forces: their slow convergence to zero as the vertices move far apart.

Vertex-edge forces do not have this problem, because they are purely short-range.

In our discussion of the force model, we argued that the long-range vertex-vertex

repulsion forces should be weak to avoid creating pockets of excessive local density in

the drawing. Now, we are saying that weak long-range forces slow down the

optimization process.

We reconcile these two issues by making the long-range forces stronger in the early

iterations and weaker in the later ones. The early iterations will produce a drawing with

the right shape, but perhaps with too much local density. The later iterations, by

weakening the long-range repulsion forces, will spread out the pockets of local density.

As with the capping of spikes, we need to tune the weakening of long-range forces

experimentally. We implement the weakening by using a convex combination of the

strong and weak long-range repulsion laws. In other words, we make a linear

combination, weighting the strong force by a and the weak force by 1 - a, where a is 1

on the first iteration and slowly decreases to 0 as a function of the number of iterations.

Again, we determine the rate of decrease experimentally.

8.2. Using Exterior Penalties to Incorporate Constraints

Most of the force-directed algorithms treat graph drawing as an unconstrained

optimization problem. At best, they allow the user to assign relative weights to the

different forces. Little work has addressed the problem of general graph drawing with

constraints. A few approaches allow the user to fix the positions of particular vertices.

The most relevant work, that of He and Mariott [HM96], allows only linear equalities and
inequalties as constraints.

The possibility of specifying constraints makes a graph drawing algorithm more flexible.

A user might introduce constraints to anchor certain vertices at fixed positions or to

restrict them to particular regions of the drawing space. Constraints can also control the

positions of vertices relative to one other, thus portraying clusters of vertices or particular

relationships among the constrained vertices.

We incorporate constraints into our model by using the method of exterior penalties.

This method requires, for each constraint, an efficient procedure to measure the distance
On

(in R) from an infeasible drawing to the nearest drawing that satisfies the constraint.

We use these procedures to add penalty terms to the objective function that increase over

time, so that eventually all descent directions will point towards the feasible space.

Several caveats are in order.

First, the method of exterior penalties is not applicable to infeasible problems—that is,

problems for which no solution satisfies all of the constraints. These problems are better

addressed by a two-phase approach that first chooses a subset of constraints to be

satisfied and then solves the resulting constrained optimization problem.

Second, the method can break down when the feasible space is disconnected. A one-

dimensional example illustrates this possibility. Let us imagine that we have a single

variable X, a trivial objective function that is always equal to 1, and two constraints. The

first constraint is that x G [1, 2] u [3, 4]; the second is that x G [-2, -1] u [3, 4]. Let us

imagine that we start with the infeasible point x = 0. The penalty term for the first

constraint will point us in the positive direction, towards the nearest point that satisfies

the constraint, X = 1. The penalty term for the second constraint, however, will point us

towards X = -1. Because these two terms will cancel out, we will never find the feasible

space, which is x e [3, 4].

Third, the magnitudes of the penalty terms should not be too large relative to the

magnitude of the gradient. They should be just large enough to force the optimization

procedure towards the feasible space. If we make the penalties too large, then they will

create the problems of spikes that we discussed earlier. Often, we do not have to make

the penalties very large for the optimization procedure to discover the feasible space.

We have had good results with quadratic penalty terms. For each constraint, we make the

corresponding penalty term the square of the vector difference between the current

drawing and the closest drawing that satisfies the constraint. We call the negative

gradient of the sum of all such penalties the penalty vector, and we add a multiple of this

penalty vector to the negative gradient that we compute from the force laws.

Let us denote the penalty vector by p and the negative gradient by -g. Let 9 be the angle

between p and -flf, i.e. COS 9 = p • (-flf) / llpll ll-flfll. Then, if COS 9 is positive, ignoring

p and following the negative gradient will bring us closer to the feasible space, while, if

COS 9 is negative, doing so will take us away from the feasible space. The more negative

the cosine, the greater we need to make our coefficient for p.

In our implementation, this coefficient is max(e, e - cos 9) * max(1, (ll-flfll / llpll)),

where e = 10"8. The first factor uses the cosine to weight the penalty vector, while the

second factor normalizes the negative gradient and penalty vectors. This formula is

surely not optimal, but it works well in practice and is simple to compute.

We refer the reader to Gill, Murray, and Wright [GMW81] for further discussion of the

method of exterior penalties and related numerical optimization methods.

8.3. Introducing Additional Degrees of Freedom

Our last application of scheduling is to take an unconstrained graph drawing problem and

turn it into a constrained problem in a larger drawing space, which we solve using

exterior penalties. We transform the problem in order to take advantage of the

maneuvering room in the larger space.

Before describing this technique, let us consider an example of what happens when the

drawing space has only one dimension rather than two. We take a simple undirected

graph: three vertices {v-i, v2, v3} and two edges {ei = (v1f v2), e2 = (v2, v3)}.

The drawing on the left in Figure 8.1 shows the globally optimal drawing. Unfortunately,

a local optimization procedure will only converge to this optimum (or its mirror image) if

V2 is between Vi and v3 in the initial drawing. If the initial placement is random, this

happy event occurs with probability 1/3. With probability 2/3, a local optimization

procedure will converge to the drawing on the right (or one of the three other equivalent
drawings), which is locally optimal but lousy.

© © © Q-® ©
Figure 8.1: Local optima for a 3-vertex graph in one dimension.

The drawing on the left is globally optimal.

While one-dimensional graph drawing may seem a contrived problem, it arises in code

and data layout applications [Be94]. In any case, using local optimization methods in one

dimension is clearly a poor strategy. A much better approach is to move the problem to a

two-dimensional space and then somehow squash it back onto one dimension. In two

dimensions, the graph above would, with probability 1, be drawn as some rotation of the
global optimum.

How do we squash the problem back onto its original drawing space? In this example,

we can introduce the constraint yt = 0 for each vertex Vj. We then apply the method of
exterior penalties to solve the constrained problem.

We can use this same strategy to convert an unconstrained two-dimensional problem into

a constrained three-dimensional problem. Here, the constraint is Z-, = 0 for each vertex Vj,

and the corresponding penalty terms are Z*. By lifting the problem from two dimensions

to three or more dimensions, we can often "untwist" drawings that would otherwise
converge to poor local minima.

9. Vertex Size and Shape

Thus far, we have used a force model in which vertices are represented by dimensionless

points. While doing so has simplified our discussion thus far, we must take vertex size

and shape into consideration in order to make our graph drawing algorithm relevant to

practical problems.

In this chapter, we adapt the force laws to take into account vertex shape and size. We

require that the vertex shapes are convex; if they are not, we can satisfy this requirement

by replacing a vertex shape with its convex hull. We also require, for the sake of

efficiency, access to a constant-time test that determines if and where a single line

segment intersects the boundary of a given vertex. Such a test is straightforward when

the vertices are drawn as rectangles, as is most commonly the case.

Vertex size and shape affect our force laws for edge springs, vertex-vertex repulsion, and

vertex-edge repulsion. When vertices are large, we need to modify our force laws to

make room for them. The modifications should be primarily short-range, since the size

and shape of a vertex rapidly decrease in importance as we move away from it.

9.1. Vertex Radii
It is convenient to always measure the distance between two vertices by using the line

segment connecting the vertex centers. We have to consider, however, that the distance

between the vertex boundaries depends on the size and shape of the vertices, as well as

the orientation of the line segment. In particular, we have to subtract out the "radius" of

each vertex—that is, the distance from the center of each vertex to the point at which the

line segment intersects the vertex boundary. We refer to these distances as the radii of

the vertices with respect to the line segment connecting them. When there is no

ambiguity, we simply refer to them as the vertex radii.

Figure 9.1 shows how we measure the radii of vertices Vi and V2 when we are computing

the distance between them. We first draw the line segment connecting the vertex centers,

and then we compute the distances between the centers and the intersections of this line

segment with the vertex boundaries to obtain the vertex radii i"i and X2.

Figure 9.1: The radii of rectangular vertices v, and v2

with respect to the line segment connecting them.

9.2. Adapting the Force Laws to Consider Vertex Radii

In order to take vertex radius into account, we make several changes to the force laws.

First, we give the edge springs a non-zero rest length that reflects the radii of the

endpoints with respect to the edge. Then, we modify the vertex-vertex repulsion law in

order to make the boundary-to-boundary rest length of an edge equal to k. Finally, we

make a similar modification to the vertex-edge repulsion force.

9.2.1. Increasing the Rest Length of Edge Springs

In the force model we have described thus far, the springs have a rest length of zero—that

is, they always try to pull their endpoints closer together. While this works well for

dimensionless vertices, it does not make as much sense when vertices have nontrivial size
and shape.

In order to reflect vertex size and shape, we make the rest length of an edge spring equal

to the sum of the endpoint radii. Accordingly, the spring pushes the endpoints away from

each other when the endpoints overlap, since the distance between the centers is less than

the sum of the radii. When the endpoints are mutually tangent, the spring exerts no force

on them. Finally, if the endpoints are further apart than the sum of their radii, then the
spring pulls them towards each other.

For an edge connecting dimensionless vertices Vj and Vj , our formula for the magnitude

of the spring force was \\fspring (Vj, Vj)ll s llx, - x/ll2 / k.

If the radii of Vi and V2 with respect to the line segment connecting them are r-\ and r2,

then we make the magnitude \\fspring (Vj, Vj)ll = (llx/ - X/ll - (n + r2))2 / (k + (n + r2)).

The direction of the spring force (pulling the vertices towards or pushing them away from

each other) depends on whether dist(Vj, Vj) is greater than or less than 1*1 + r2. A

reminder: we measure llx/ - xji\ as the length of the line segment connecting the vertex

centers.

9.2.2. Modifying the Vertex-Vertex Repulsion Law

We had set up our edge spring and vertex-vertex repulsion laws so that an edge would

have a rest length of k. Now that we have modified the spring law to consider the vertex

radii, we need to make a corresponding change to the vertex-vertex repulsion law.

For dimensionless vertices, we had the following formula for the magnitude of the

repulsion force: Ufrepulsion (Vj, Vj)ll = K / llx/ - X/ll.

If the radii of V1 and V2 with respect to the line segment connecting them are i"i and r2,

then we replace this formula with \\frepulsion (Vj, Vj)ll = (k + (n + r2))2 / llx/ - Xyll.

As we discussed earlier, using a single law for vertex-vertex repulsion can cause

excessive local density. If we distinguish between strong short-range and long-range

repulsion, then the above law is for short-range repulsion, and the modification to the

inverse-square long-range repulsion law is analogous.

9.2.3. Modifying the Vertex-Vertex Repulsion Law

Finally, we need to modify the vertex-edge repulsion law to reflect the vertex size and

shape.

In our model for dimensionless vertices, we made the magnitude of the vertex-edge

repulsion force \\frepulsion (Vj, ej)ll = cw({\f I x) - k) when x, the distance between

vertex Vj and edge ej, is less than k.

Applying the same idea we used for vertex-vertex repulsion, we replace k by k + r, where

r is the radius of Vj with respect to the shortest line segment connecting it to ej.

Accordingly, the new magnitude is \\frepulsion (V|, ej)ll = cve(((k+r)2 / x) - (k+r)) when x,

the distance between the center of vertex Vj and edge ej, is less than k + r.

9.3. Adapting the Procedure to Compute the Forces

Since we are modifying the force laws to take vertex size and shape into account, we also

have to make changes to the procedure for computing the forces. In particular, we have

to modify the Barnes-Hut algorithm that we use for computing vertex-vertex repulsion

and the distance cut-off procedure that we use for computing vertex-edge repulsion. We

will assume for simplicity that all vertices are rectangles, but our methods apply as long

as the vertices conform to simple, parameterized class of shapes, such as ellipses.

The change we make to the Barnes-Hut procedure is that we store in each cell the average

shape of a vertex. Since our vertices are rectangles, we simply maintain the average

width and height of the vertices in each cell. Then, when we approximate the repulsion

that the cell exerts with its centroid, we use this width and height in our computation.

For our computation of vertex-edge repulsion, we have to modify the assignment of

vertices to grid cells to take radius into account. We store each vertex in every grid cell

that it intersects. Then, when we iterate for each edge through the grid cells it occupies

(including all of the grid cells occupied by the endpoints) and the neighbors of those cells,

we will find all vertices within the short range of the edge.

10. Qualitative Results: A Gallery of Examples

Until now, we have focused on the details of our algorithm. Now, we look at the

performance of an implementation that we have written in Java. In this chapter, we take a

qualitative perspective: we present a variety of drawing produced by our implementation

and discuss the strengths and weakness of the algorithm on different classes of graphs in

intuitive terms. In Chapter 11, we will take a more quantitative perspective.

Our presentation of drawings is in order of increasing density. We start from trees, the

sparsest of graphs, and work our way up to complete graphs. We only consider graphs

that are connected, since it is not difficult to find the connected components of a graph

and draw them separately.

10.1. Trees

Trees are the sparsest of connected graphs: a tree of n vertices has m = n - 1 edges.

Tree drawing is a well studied problem, and there are good, special-purpose algorithms

for drawing both rooted (directed) and unrooted trees [RT81, Ea92].

It is surprising, perhaps, that force-directed algorithms perform very badly on trees. In

fact, trees are some of the worst inputs for graph drawing algorithms based on numerical

optimization. Trees have two qualities that confound force-directed algorithms. The first

is that they have countless poor local minima that result from swapping the positions of

subgraphs so that they cross. The second is that, because trees are so sparse, the spring

forces do not particularly restrict the movement of vertices; instead, it is the repulsion

forces that largely determine the placement of vertices. Because the repulsion forces are

far less smooth than the spring forces, they slow down any first-order numerical

optimization, such as steepest descent of the conjugate gradient method.

Nonetheless, we have two reasons to test our algorithm on trees. The first is

completeness: since our algorithm applies to all connected graphs, it behooves us to test it

on as wide a range of input graphs as possible. The other reason is that we can compare

the performance of our algorithm with that of other force-directed approaches, and

thereby see the relative strengths and weakness of our techniques.

The drawings that our algorithm produces are similar to those produced by radial tree

drawing algorithms, only that ours tend to distribute vertices more evenly throughout the

drawing area. Unlike the radial drawing algorithms, however, we do not always produce

crossing-free drawings of trees. In general, drawings of trees that have edge crossings
correspond to poor local minima.

We did experiment with modifying the force laws to produce more traditional drawings

of rooted trees (see the discussion of "eumorphous" drawings in Section 3.1.1), where all

edges were directed towards the root and pointed upwards. Unfortunately, we found that

the aesthetic principles for eumorphous drawings of trees were very different from those

for general graphs. While our force-directed drawings aim to distribute vertices

uniformly throughout the drawing space, traditional drawings of rooted trees tend to be

much denser at the bottom, where the leaves are, than at the top, where the root is, and
they are generally much wider that they are tall.

Let us consider, for example, a complete binary tree of n = 2h-1 vertices. Our force-

directed algorithm will produce a drawing that roughly occupies a square drawing area

whose side is kVn. In contrast, a eumorphous drawing will have h layers and 2h"1

leaves—roughly half of the vertices—occupying the lowest of the layers. In order for the

height and width of the drawing area to be equal, the vertical separation between layers

would have to be 2 " / h (roughly n / log n) times larger than the horizontal separation
between vertices on the lowest layer.

We experimented with various schemes involving constraints and modifications of the

spring laws for directed edges, but none of them consistently produced satisfactory
drawings of rooted trees.

Given the difficulty that force-directed algorithms have drawing trees, we suspect that a

general graph drawing algorithm should use a hybrid approach. First, it should compute

the unique tree of biconnected components—that is, the maximal subgraphs that cannot

be disconnected by the removal of a vertex. It should then use a specialized tree-drawing

algorithm to arrange the centroids of these biconnected components. Finally, it should

draw each component independently using a force-directed algorithm—with the centroids

fixed according to the previous step. We discuss such an approach, as well as its pitfalls,
in the section on future work.

We now present a few examples of trees produced by our algorithm.

Figure 10.1 shows a complete binary tree of 63 vertices. To produce this drawing, we
used a three-dimensional drawing space with two-dimensional constraints, as described in
section 8.3. Figure 10.2 shows an example of the many poor local minima that often
result when we apply our algorithm directly on a two-dimensional drawing area.

v; V r

1 A>

Figure 10.1: Complete Binary Tree of 63 Vertices

A V
>\ U "U

/ /

/ A I V-

4

/
V

Figure 10.2: Example of Bad Local Minimum

Figure 10.3 shows a random tree of 100 vertices; here we can see clearly that the drawing

is not radial, but rather that the vertices spread themselves out relatively uniformly

throughout the drawing area.

■v. ?
V I

V -' A %-

/fa

1
Figure 10.3: Random Tree of 100 Vertices

10.2. Planar Biconnected Graphs

As we have discussed, the performance of force-directed algorithms suffers for trees, and

in general for graphs that are not biconnected. We therefore turn our attention to

biconnected graphs. We start with an important class of biconnected graphs: graphs that
are biconnected and planar.

Planar graphs are of particular theoretical and practical interest. Planar graphs, by

definition, can be drawn in the plane without any edge crossings. Many classical results

in graph theory pertain to planar graphs: Fary determined that a planar graph could be

drawn without edge crossings using straight-line edges [Fa48]; Hopcroft and Tarjan

determined how to both test the planarity of a graph and compute an embedding of it in

linear time [HT74]; Tutte proposed a "barycenter" method for drawing planar graphs that

was suggestive of the later force-directed approaches and that would always converge to a

drawing without edge crossings [Tu60]. The practical significance of planar graphs

comes from their ubiquity: maps are the face-duals of planar graphs; circuits laid out on a

board cannot have edge crossings; roads and railroad tracks cannot arbitrarily cross each
other; and so forth.

A classic result of Euler is that a planar graph of n vertices has at most m < 3n - 6 edges

[BM76]. Planar graphs are therefore quite sparse: the average degree of a vertex is at

most six.

In general, sparse graphs are harder for force-directed algorithms to draw than dense ones

because the repulsion forces are not as smooth as the spring forces. Nonetheless,

biconnected planar graphs are generally easier to draw than trees. The sparsest of

biconnected planar graphs are cycles, where every vertex has a degree of two. Cycles,

like trees, are susceptible to poor local minima because of their sparseness; these local

minima generally result from the cycles getting tangled. At the other extreme, we have

triangular meshes, where the average degree is almost six. These graphs, not surprisingly,

are much easier for force-directed algorithms to draw.

Regardless of the planarity of the graph, our algorithm does not attempt to avoid edge

crossings. Similarly, our algorithm does not treat graphs of three-dimensional objects in

any special way—that is, the algorithm does not take into account the fact that their

topologies correspond to those of three-dimensional objects.

Figure 10.4 shows a drawing of a cycle of 100 vertices. In general, cycles are optimally

drawn as regular polygons. Interestingly, they are drawn as such even when placed in a

higher dimensional space—that is, they will occupy a planar slice of that space.

r
V

p

/

>

\

V

Figure 10.4: Cycle of 100 Vertices

Force-directed algorithms work especially well for planar meshed. Figure 10.5 shows a

triangular mesh of 465 vertices. Figure 10.6 shows a square mesh of 400 vertices. As

with trees, using a third dimension allows the drawing to untwist itself out of tangles.

Like cycles, planar meshes will be drawn as planar even when placed in a higher
dimensional space.

Figure 10.5: Triangular Mesh of 465 Vertices

Figure 10.6: Square Mesh of 400 Vertices

Figure 10.7 shows two drawings of a graph corresponding to the topology of a

dodecahedron. Interestingly, both graphs drawings were produced in two dimensions.

Neither is crossing-free, since a crossing-free drawing would require a high variance in

edge length. The drawing on the left appears to be three-dimensional.

Figure 10.7: 2 Drawings of a Dodecahedron

Figure 10.8 shows a drawings of a triangular mesh of 210 vertices and a square mesh of

144 vertices constrained to occupy the surface of a three-dimensional sphere. This

constraint is interesting for two reasons. First, it suggests applications such as

cartography, where conforming the shape of the drawing surface is a critical part of the

overall drawing problem. Second, the constraint is non-linear, and hence is not addressed

by any of the published work on force-directed graph drawing.

Figure 10.8: Planar Meshes Constrained to the Surface of a Sphere

10.3. Sparse Non-Planar Graphs

Although planarity arises naturally in graphs corresponding to concrete physical networks

such as roads or railway systems, we can hardly expect abstract networks to be planar.

Often, our graphs do not represent physical networks, but rather they represent

relationships in an organization or interactions in a complex system. We may be able to

assume that such graphs are sparse, but not that they are planar.

Our algorithm does not take edge crossings into account; rather, its performance depends

mostly on the sparseness or density of the input graph. Of course, given a non-planar

input graph, it will always produce a drawing that has edge crossings. In general, the

denser the graph, the easier and faster it is for the numerical optimization procedure to

converge to a local minimum. On the other hand, denser graphs often result in less

legible drawings than sparser ones, because the edges clutter the drawing.

We have chosen examples for this section from two families of non-planar graphs where
m is 0(n).

A cycle of n/c C-cliques (i.e. copies of Kc) is non-planar if c > 5 and has an average

degree of roughly C-1. Figure 10.9 shows a cycle of 20 KcS.

Figure 10.9: Cycle of 20 KsS

A torus is a non-planar graph constructed by taking a square mesh and connecting the top

to the bottom and the left to the right. Every vertex in a torus has degree four. Figure

10.10 shows a torus of 256 drawn in both two and three dimensions. The drawing on the

left misleadingly appears to be three-dimensional, but the drawing on the right, which is

in fact three-dimensional, best reveals the structure of the graph.

\\>

V\

,v #

%
h***

Figure 10.10: Torus of 256 Vertices in Two and Three Dimensions

10.4. Dense Graphs

Finally, we consider denser graphs where m is not 0(n). If m is 0(n log n), then the

time necessary to compute the spring forces will be within a constant factor of the time

necessary to compute the vertex-vertex repulsion forces using the Barnes-Hut procedure.

If m is 6(n2), we have no reason to use the Barnes-Hut procedure: since we will require

0(n2) time to compute the gradient, we may as well compute the repulsion forces exactly.

In fact, we might even use Kamada and Kawai's algorithm, since we will already need

0(n2) space to store the graph.

While increasing the density of a graph beyond an average degree of 0(log n) increases

the time necessary to compute the gradient, it does decrease the number of iterations

necessary for convergence, since the spring forces are smoother than the repulsion forces,

and the spring forces dominate the repulsion forces in dense graphs.

Most drawings of dense graphs are too cluttered with edges to be useful. Some

exceptions are hypercubes, complete bipartite graphs, and complete graphs, like those we

show below. We doubt that many practical applications require drawings of dense

graphs, but we include this section for completeness.

A d-dimensional hypercube has 2d vertices, each of degree d. Figure 10.11 shows

drawings of a 6-dimensional hypercube of 64 vertices in drawing spaces of two and three
dimensions.

Figure 10.11: 6-Dimensional Hypercube in Two and Three Dimensions

The complete bipartite graph Kni,n2 has n!+n2 vertices and n!n2/2 edges. Figure 10.12

shows two two-dimensional drawings of Ke.e- In the drawing on the right, the vertices
have been constrained to lie on a circle.

h^i

\l ,ä
V/\ V

i^^V^

Figure 10.12: The Complete Bipartite Graph Ke.s

Finally, the complete graph Kn has n vertices, each of degree n-1. Figure 10.13 shows a
two-dimensional drawing of K30. We have made the vertices a bit larger so that they are

clearer against the clutter of the 435 edges.

Figure 10.13: The Complete Graph K30

11. Quantitative Results

While the previous chapter illustrates output generated by our algorithm, the drawings are

fairly typical of those produced by all force-directed algorithms. Given that our main

contribution is to improve the performance of such algorithms, we now shift to a more

quantitative perspective to demonstrate this improvement.

We do so in three ways. First, we analyze our approach and compare it to others in terms

of its computational complexity. Unfortunately, this analysis does not help us understand

the number of iterations required to converge to a locally optimal drawing. We therefore

perform experiments to see how the number of iterations required for convergence

depends on both the size and density of the graph. Finally, we look at the time required to

compute each of these drawings, and compare our times to those presented in other
papers on force-directed algorithms.

We obtained all of our results with a Java implementation of our algorithm running on a

Pentium 133 MHz machine under the Microsoft Windows 95 operating system. We

used Sun Microsystems's JDK version 1.1.7 as our Java compiler and interpreter.

11.1. Computational Complexity

The computational complexity of an iteration, as shown in Chapter 6, is 6(m + n log n).

Briefly reviewing, we take 0(m) time to compute the spring forces, 0(n log n) time to

compute the vertex-vertex repulsion forces using the Barnes-Hut algorithm, and 0(m)

time to compute the vertex-edge repulsion forces using distance cut-offs.

This computational complexity compares very favorably to those of other algorithms in

the literature, as shown by the table in Figure 11.1. We note that, for the algorithms of

Kamada and Kawai [KK89], Davidson and Harel [DH96], and Tunkelang [Tu94], we

report the complexity of n iterations, since, for these three algorithms, each iteration only

moves a single vertex as compared to moving all n vertices in all of the other algorithms.

We also recall that Kamada and Kawai's algorithm uses a preprocessing phase that

requires 0(n2) space and 0(n3) time. Finally, we note that some of the running times

depend on the distribution of vertices being sufficiently uniform—namely, the

computation of vertex-vertex repulsion forces in Fruchterman and Reingold's "grid

variant" and computation of vertex-edge repulsion in our own algorithm.

Springs
Vertex-Vertex

Repulsion

Vertex-Edge

Repulsion
Crossings TOTAL

[Ea84] 0(m) 9(n2) 9(n2)

[FR91] e(m)
9(n2)

6(n) for grid variant

9(n2)

9(m)

[FLM94] 0(m) e(n2) 9(n2)

[Tu94] G(m)
6(ni!)

6(n) for grid variant

8(nm)

9(m)

9(m2)

9(m)

9(m2)

9(m)

[KK89] 9(n2) 9(n2)

[DH96] 9(m) ein2) 9(nm) 9(m2) 9(m2)

proposed

algorithm
0(m) 0(n log n) 0(m)

9(m +

n log n)

Figure 11.1: Computational Complexity of Computing the Negative Gradient

As we can see in the table, the computation of vertex-vertex repulsion forces is generally

the bottleneck. The Barnes-Hut algorithm allows us to reduce the complexity of this step

from 9(n2) to 9(n log n) without incurring the extreme loss of accuracy of the "grid

variant" method (i.e. distance cut-offs). Unlike several of the algorithms, ours does take

vertex-edge repulsion into account; unfortunately, including edge-crossings would not

only be expensive, but would also rule out our optimization approach.

11.2. Number of Iterations

We have seen that the running time of our algorithm on a single iteration is

asymptotically better than those of the published force-directed algorithms. We now look

at the number of iterations required for convergence.

Unfortunately, all of the papers in the literature are evasive on this point. Most use a

fixed number of iterations; Kamada and Kawai are the exception in that their termination

condition depends on the maximum energy among the vertices. The authors that

comment on the number of iterations generally speculate that it is proportional to the

number of vertices. Unfortunately, there is no systematic study of the performance of

graph drawing algorithms on large graphs, perhaps because the 9(n) inner loop of the

published algorithms makes such a study prohibitive.

In order to gain some insight into the number of iterations required for convergence, we

ran a suite of experiments. We used several families of graphs: paths, cycles, complete

binary trees, square meshes, hypercubes, and complete graphs. For each family, we

selected a set of graphs of varying sizes, in order to measure the number of iterations as a

function of the size. In order to test the relative performance of steepest descent and the

conjugate gradient method, we tested all of our graphs with both optimization procedures.

For each graph and optimization procedure, we ran our algorithm ten times on random

initial drawings, and then computed the mean number of iterations required for

convergence. We used a straightforward, if conservative, convergence criterion: the

algorithm terminates when an iteration moves no vertex more than half of a pixel. Since

our line search is reasonably accurate, this criterion all but guarantees that the final

drawing is visually indistinguishable from a local optimum.

The plots that follow confirm two observations that we have made in earlier chapters.

First, the conjugate gradient method consistently outperforms steepest descent, and the

gap widens as n increases. Second, the number of iterations required for convergence

decreases as the density increases. We note that a conjugate gradient iteration is only

slightly more expensive than that for a steepest descent iteration; in particular, computing

the descent direction requires only one gradient computation in either case.

Paths
900

800

700

600 ■

500 -

Steepest Descent

Conjugate Gradient Method

jse^

—i—i—i—i—i—|—

500 750

number of vertices

1000 1250

Figure 11.2: Performance on Paths

Cycles
1250

1000

750

E 500'

250

Steepest Descent

Conjugate Gradient Method

—| 1 1 1 1 1 1 1 r

250 500

number of vertices

~i—■—r"
750 1250

Figure 11.3: Performance on Cycles

Complete Binary Trees
1500

1250-

1800-

■Z. 750-

Steepest Descent

1250

number of vertices

Figure 11.4: Performance on Complete Binary Trees

900
Square Meshes

800 ^

700 -^
<gs Steepest Descent

600-
LO

CD

2 500-
CD

O

S 400-
JD
E

300 ^ s^s^ Conjugate Gradient Method

200 ^

100-

0
[

i ' • ' ' i ■ ' i i i i i i i —|—i—i—i—i—|

250 500 750 1000 1250

number of vertices

Figure 11.5: Performance on Square Meshes

200

175

150

£ 125
O

C3

CD

■■Z 100-1

Hypercubes

Steepest Descent

Conjugate Gradient Method

250 500 750

number of vertices

1000

Figure 11.6: Performance on Hypercubes

1250

35
Complete Graphs

30-

25

=£ 20

15-

10

50 75 100
number of vertices

150

Figure 11.7: Performance on Complete Graphs

11.3. Running Time

A review of the literature reveals that very few papers even consider the performance of

force-directed algorithms on large graphs. In fact, we could only find one paper that

reported running times for graphs of over a hundred vertices.

Frick et al., report running times of 9.19 seconds for a complete binary tree of 127

vertices, 9.54 seconds for a path of 128 vertices, 45.04 seconds for a binary tree of 255

vertices, 37.93 seconds for a path of 256 vertices, and 71.78 seconds for a square mesh of

256 vertices. They estimate that the number of iterations is linear in the number of

vertices, and hence that their running time is 0(n), which would imply that doubling the

number of vertices would multiply the running time by eight.

Not only do we achieve better running times, but our algorithm scales more gracefully

because of both the Barnes-Hut and conjugate gradient procedures. If we make the same

assumption as Frick et al. that the number of iterations is linear in the number of vertices,

then our running time is 0(n log n), which would imply that doubling the number of

vertices roughly multiplies the running time by four. If, as convergence analysis of the

conjugate gradient method suggests, the number of iterations is proportional to the square
root of the number of vertices, then this difference is even larger.

The plot below shows the running times for the families of graphs we have described in
the previous section. As we can see, for graphs of the same number of vertices, the
running time decreases as the density increases. Unfortunately, our implementation could
not handle large complete graphs.

700
Running Times

500 750

number of vertices

Cycles

Paths

Complete Binary Trees

Square Meshes

Hypercubes

1250

Figure 11.8: Running Times on a Variety of Input Graphs

12. Conclusions and Future Work

The principle contribution of this dissertation is to approach graph drawing using time-

tested techniques from other fields. The original impetus for this work was an insight

about replacing the fixed step size in published force-directed algorithms with a primitive

line search procedure. Indeed, the adaptive line search procedure that we use is a major

improvement on either using a fixed step size or complicating the algorithm with a

"temperature" scheme. In general terms, however, we furthered the state of the art by not

treating graph drawing as an isolated field.

From numerical optimization, we learned that we could achieve a better rate of

convergence with conjugate gradients than with steepest descent. We also learned to pay

better attention to the smoothness of the objective function. Finally, we were able to take

advantage of the method of exterior penalties, both to incorporate a general class of

constraints into our model and to avoid poor local minima.

From the many-body simulation literature, we borrowed the Barnes-Hut algorithm. This

improvement is perhaps the most critical to making graph drawing scale to large graphs.

Finally, we had some new insights specific to graph drawing. In particular, our handling

of vertex shape and size and our introducing a vertex-edge repulsion force make the

general graph drawing model much more relevant to real visualization problems.

Of course, there are many open problems in graph drawing. Here are some questions that

suggest directions for future work:

1) Can we make a rigorous theoretical analysis of the number of iterations required

for convergence?

Both the method of steepest descent and the conjugate gradient method lend themselves

to theoretical analysis. Indeed, the former can be shown to have a linear rate of

convergence, while the latter can be show to have a superlinear rate. A more accurate

analysis of the rate of convergence requires that we know the condition number of the

Hessian of the objective function we are minimizing. Since our objective function is not

quadratic, the Hessian is not a constant, and therefore the condition number changes from

iteration to iteration. A deeper understanding of the convergence properties of different

optimization procedures on graph drawing problems probably requires analytical

techniques that specifically address this varying condition number.

2) Can we incorporate discrete terms, such as edge crossings, into a model based on
continuous optimization?

There is a consensus in the graph drawing community that, all else equal, it is best to

avoid edge crossings. Unfortunately, all else is not equal. The main problem with

incorporating edge crossings into a continuous optimization approach is that the number

of edge crossings is a discrete term. What would be ideal is a continuous term that

correlates, at least approximately, to the number of edge crossings.

3) Can we design an algorithm that recognizes easy patterns in a graph and uses a
divide-and-conquer approach to draw the graph more efficiently?

A first step in this direction would be to split a graph into its biconnected components, as

we discussed in Section 10.1. To review, the idea is to lay out the centroids of the

biconnected components using a specialized tree-drawing algorithm, and then to apply

our force-directed algorithm to each biconnected component separately, fixing its
centroid to where the tree-drawing algorithm placed it.

This approach, however, needs to address the subtlety that the edges connecting vertices

in different biconnected components will be affected by the placement of their endpoints

within their respective components. Moreover, it only helps us when we have a

significant number of biconnected components. It would be nice to explore more

sophisticated heuristics, such as partitioning the graph using small separators.

4) Can we do better than local optimization, e.g. can we obtain a drawing whose
energy is within some constant multiple of the globally optimal energy?

This problem, as far as we know, has been completely open since Eades wrote his first

paper on the spring model. An approach with guaranteed bounds in terms of the globally

optimal energy would seem to require a much deeper understanding of the problem than

we have thus far. We have nothing to offer but encouragement.

5) Can we achieve drawings that conform to the aesthetics of the force-directed
model without resorting to continuous optimization?

The only techniques in the graph drawing literature that address general graphs are the
topology-shape-metrics model and the force-directed model. The former only applies to
orthogonal graph drawing problems. The latter, while useful, is fraught with problems,
ranging from vulnerability to poor local minima to performance issues. Is there an
alternative technique for producing drawings with the aesthetics that the force-directed

model aims to quantify?

Bibliography

[Be94] B. Beckman, "Theory of Spectral Graph Layout," Technical Report MSR-TR-94-
04, Microsoft Research, 1994.

[BH86] J. Barnes and P. Hut, "A Hierarchical 0(N log N) Force-Calculation Algorithm,"
Nature, vol. 324, pp. 446-449, 1986.

[BK94] T. Biedl and G. Kant, "A Better Heuristic for Orthogonal Graph Drawings," in

Proceedings of the Second Annual European Symposium on Algorithms, vol. 855
of Lecture Notes in Computer Science, pp. 24-35, 1994.

[BM76] J. Bondy and U. Murty, Graph Theory with Applications, Macmillan, London,
1976.

[Ca80] M. Carpano, "Automatic Display of Hierarchized Graphs for Computer-Aided

Decision Analysis," IEEE Transactions on Systems, Man, and Cybernetics, vol.
10, no. 11, pp. 705-715, 1980.

[CLR90] T. Cormen, C. Leiserson, and R. Rivest, Introduction to Algorithms, MIT
Press, London, 1990.

[CP96] M. Coleman and D. Parker, "Aesthetics-based Graph Layout for Human

Consumption," Software—Practice and Experience, vol. 26, no. 12, pp. 1415-
1438,1996.

[DETT94] G. Di Battista, P. Eades, R. Tamassia, and I. Tollis, "Algorithms for Drawing

Graphs: An Annotated Bibliography," Computational Geometry, vol. 4, pp. 235-
282, 1994.

[DETT99] G. Di Battista, P. Eades, R. Tamassia, and I. Tollis, Graph Drawing, Prentice-
Hall, New Jersey, 1999.

[DH96] R. Davidson and D. Harel, "Drawing Graphs Nicely Using Simulated

Annealing," ACM Transactions on Graphics, vol. 15, no. 4, pp. 301-331, 1996.

[Ea84] P. Eades, "A Heuristic for Graph Drawing," Congressus Numerantium, vol. 42,

pp. 149-160, 1984.

[Ea92] P. Eades, "Drawing Free Trees," Bulletin of the Institute for Combinatorics and

its Applications, vol. 5, pp. 10-36, 1992

[ES90] P. Eades and K. Sugiyama, "How to Draw a Directed Graph," Journal of

Information Processing, vol. 13, no. 4, pp. 424-437,1990.

[Fa48] I. Fary, "On Straight Lines Representations of Planar Graphs," Acta Scientiarum

Mathematicarum, vol. 11, pp. 229-233, 1948.

[FCW67] C. Fisk, D. Caskey, and L. West, "ACCEL: Automated Circuit Card Etching

Layout," in Proceedings of the IEEE, vol. 55, no. 11, pp. 1971-1982,1967.

[FLM94] A. Frick, A. Ludwig, and H. Mehldau, "A Fast Adaptive Layout Algorithm for

Undirected Graphs," in [GD94], pp. 388-403.

[FR91] T. Fruchterman and E. Reingold, "Graph Drawing by Force-Directed Placement,"

Software—Practice and Experience, vol. 21, no. 11, pp. 1129-1164,1991.

[GD93] G. Di Battista, H. de Frayssseix, P. Eades, P. Rosenstiehl, and R. Tamassia, eds.,

Proceedings of ALCOM International Workshop on Graph Drawing and

Topological Graph Algorithms (Graph Drawing '93), Paris, France, 1993.

[GD94] R. Tamassia and I. G. Tollis, eds., Proceedings of DIMACS International

Workshop, GD '94, Princeton, New Jersey, USA, vol. 894 of Lecture Notes in

Computer Science, 1994.

[GD95] F. J. Brandenburg, ed., Proceedings of Symposium on Graph Drawing, GD '95,

Passau, Germany, vol. 1027 of Lecture Notes in Computer Science, 1995.

[GD96] S. North, ed., Proceedings of Symposium on Graph Drawing, GD '96, Berkeley,

California, USA, vol. 1190 of Lecture Notes in Computer Science, 1996.

[GD97] G. Di Battista, Proceedings of 5th International Symposium, GD '97, Rome, Italy,

Algorithms, vol. 1353 of Lecture Notes in Computer Science, 1997.

[GJ83] M. Garey and D. Johnson, "Crossing Number is NP-Complete," SIAM Journal of

Algebraic and Discrete Methods, vol. 4, no. 3, pp. 312-316, 1983.

[GMW81] P. Gill, W. Murray, and M. Wright, Practical Optimization, Academic Press,
London, 1981.

[GNV88] E. Gansner, S. North, and K. Vo, "DAG—A Program that Draws Directed

Graphs," Software Practice and Experience, vol. 18, no. 11, pp. 1047-1062,1988.

[GR87] L. Greengard and V. Rokhlin, "A Fast Algorithm for Particle Simulations,"
Journal of Computational Physics, vol. 73, pp. 325-248,1987.

[GT94] A. Garg and R. Tamassia, "On the Computational Complexity of Upward and
Rectilinear Planarity Testing," in [GD94], pp. 12-23.

[HM96] W. He and K. Mariott, "Constrained Graph Layout," in [GD96], pp. 217-232.

[HT74] J. Hopcroft and R. Tarjan, "Efficient Planarity Testing," Journal of the ACM,
vol. 21, no. 4, pp. 549-568,1974.

[Ig95] J. Ignatowicz, "Drawing Force-Directed Graphs using Optigraph," in [GD95], pp.
333-336.

[KK89] T. Kamada and S. Kawai, "An Algorithm for Drawing General Undirected
Graphs," Information Processing Letters, vol. 31, pp. 7-15, 1989.

[PT98] A. Papakostas and I. Tollis, "Algorithms for Area-Efficient Orthogonal

Drawings," Computational Geometry: Theory and Applications, vol. 9, nos. 1-2,
pp. 83-110, 1998.

[QB79] N. Quinn, Jr. and M Breuer, "A Force Directed Component Placement Procedure

for Printed Circuit Boards," IEEE Transactions on Circuits and Systems, vol. 26,
no. 6, pp. 377-388,1979.

[RM88] M. Reggiani and F. Marchetti, "A Proposed Method for Representing

Hierarchies," IEEE Transactions on Systems, Man, and Cybernetics, vol. 18, no.
1, pp. 2-8,1988.

[RT81] E. Reingold and J. Tilford, "Tidier Drawing of Trees," IEEE Transactions on

Software Engineering, vol. 7, no. 2, pp. 223-228,1981.

[Sa90] J. Salmon, Parallel Hierarchical N-Body Methods, PhD Thesis, California

Institute of Technology, 1990.

[SM94] K. Sugiyama and K. Misue, "A Simple and Unified Method for Drawing Graphs:

Magnetic-Spring Algorithm," in [GD94], pp. 364-375.

[SR83] K. Supowit and E. Reingold, "The Complexity of Drawing Trees Nicely," Acta

Informatica, vol. 18, pp. 359-368,1983.

[STT81] K. Sugiyama, S. Tagawa, and M. Toda, "Methods for Visual Understanding of

Hierarchical System Structures," IEEE Transactions on Systems, Man, and

Cybernetics, vol. 11, no. 2, 1981.

[SW94] J. Salmon and M. Warren, "Skeletons from the Treecode Closet," Journal of

Computational Physics, vol. Ill, no. 1,1994.

[Ta87] R. Tamassia, "On Embedding a Grid with the Minimum Number of Bends,"

SIAM Journal of Computation, vol. 16, no. 3, pp. 421-444,1987.

[Tu60] W. Tutte, "Convex Representations of Graphs," in Proceedings of the London

Mathematical Society, vol. 10, no. 3, pp. 304-320,1960.

[Tu63] W. Tutte, "How to Draw a Graph," in Proceedings of the London Mathematical

Society, vol. 13, no. 3, pp. 743-768,1963.

[Tu94] D. Tunkelang, "A Practical Approach to Drawing Undirected Graphs," Technical

Report CS-94-161, Carnegie Mellon University School of Computer Science,

1994. Presented at [GD93].

[WM95] X. Wang and I. Miyamoto, "Generating Customized Layouts," in [GD95], pp.

504-515.

[WS79] C. Wetherell and A. Shannon, "Tidy Drawing of Trees," IEEE Transactions on

Software Engineering, vol. 5, no. 5, pp. 514-520,1979.

